Compiling Methods of Large-Area Aeromagnetic Map Based on Multiple Data Sources

Jump To References Section

Authors

  • Institute of Mineral Resources, Chinese Academy of Geophysical Sciences, CITIC Construction Co. Ltd., Beijing ,CN
  • Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037 ,CN
  • China Aero Geophysical Survey and Remote Sensing Centre for Land and Resources, Beijing 1900083 ,CN
  • China Aero Geophysical Survey and Remote Sensing Centre for Land and Resources, Beijing 1900083 ,CN

Keywords:

Multiple Data Source, Grid Data, Standardization, Aeromagnetic Mapping, High Precision Control Framework Grid.

Abstract

In this paper, the author has conducted a research on the compiling methods and technologies of large-area aeromagnetic maps with aeromagnetic data collected in different times, according to different scales, at different flying altitudes, with different surveying instruments, and of different qualities and precision. The focus of this research is on the standardized processing technique of data in independent survey areas, the splicing methods and splicing principles of grids, and the high-precision control framework grid technology which retains the magnetic field information of lithosphere. With the 1:1,000,000 Chinese land area aeromagnetic map as an example, the author has conducted a positive probe into the mapping methods and mapping effects.

Downloads

Download data is not yet available.

Downloads

Published

2022-10-19

How to Cite

Zhang, H., Wang, D., Xiong, S., & Fan, Z. (2022). Compiling Methods of Large-Area Aeromagnetic Map Based on Multiple Data Sources. Journal of Mines, Metals and Fuels, 64(10), 517–527. Retrieved from https://informaticsjournals.com/index.php/jmmf/article/view/31602

 

References

S. Maus and T. Sazonova, K. Hemant, et al, (2007): National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map[J], Geochemistry, Geophysics, Geosystems, 8 (6).

Chiappini, M., A. Meloni, E. Boschi, O. Faggioni, N. Beverini, C. Carmisciano, and I. Marson, (2000): On shore-off shore integrated shaded relief magnetic anomaly map at sea level of Italy and surrounding areas, Ann. Geofis., 43, 983–989.

Socias, I., and J. Mezcua, (1996): Levantamiento aeromagnetico del archipielago canario, Publ. Tec. 35, 28 pp., Inst. Geogr. Nacl., Madrid.

Socias, I., J. Mezcua, J. Lynam, and R. Del Potro, (1991): Interpretation of an aeromagnetic survey of the Spanish mainland, Earth Planet. Sci. Lett., 105 (1–3), 55–64.

Vine, F. J., and D. H. Matthews, (1963): Magnetic anomalies over oceanic ridges, Nature, 199, 947–949.

Cordell L, (1985): Techniques, applications and problems of analytical continuation of New Mexico aeromagnetic data between arbitrary surfaces of very high relief[J], Institut de Geophysique, Universite de Lausanne, Switzerland, Bulletin No.7, 96-99.

Fairhead, J. D., D. J. Misener, C. M. Green, G. Bainbridge, and S. W. Reford, (1997): Large scale compilation of magnetic, gravity and electromagnetic data: The new exploration strategy for the 90’s, in Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, edited by A. G. Gubins, pp. 805–816, GEO F/X, Toronto, Canada.

Maus, S., H. Lu¨hr, M. Rother, K. Hemant, G. Balasis, P. Ritter, and C. Stolle, (2007): Fifth-generation lithospheric magnetic field model from CHAMP satellite surveys, Geochem. Geophys. Geosyst., 8, Q05013, doi:10.1029/2006GC001521.

Maus, S., M. Rother, R. Holme, H. Lu¨hr, N. Olsen, and V. Haak, (2002): First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field, Geophys. Res. Lett., 29 (14), 1702, doi:10.1029/2001GL013685.

Wang N D., (2007): Some problems concerning 1, 250000 areomagnetic series maps [J]. Geophysical and Geochemical Exploration (in Chinese), 31 (5) :459?464.

WEN Zhenhe, ZHANG Xunhua, YANG Jinyu, et al. (2011): Digital Compilation of 1:1000 000 Geological and Geo-physical Map Series of China and Adjacent Regions on MapGIS Platform [J], Journal of Geoinformation Science, 13 (6), 750-757.

Gao Guoming, Kang Guofa, (2010): The Compare Analysis of Satellite Geomagnetic Model Values andIGRF Model Values with Observed Values of Geomagnetic Observatories in China[J].Journal of Yunnan University, 32 (5): 547-552.

Kang Guofa, Gao Guoming, Bai Chunhua, et al. (2010): Distribution of the Magnetic Anomaly for the CHAMP Satellite in China and Adjacent Areas[J]. Chinese Journal of eophysics, 53 (4) :895-903.

Backus, G. E. (1970): Non-uniqueness of the external geomagnetic field determined by surface intensity surveys, J. Geophys. Res., 75, 6339-6341.

Minty B R S, (1991): Simple micro-levelling for aeromagnetic data[J], Exploration Geophysics, V.22, P591-592.

Naudy H, Dreyer H, (1968): Essai de filtrage non-lineaire applique aux profils aeromagnetiques[J], Geophysical Prospecting, 16 (2), 171-178.

Briggs L C, Machine contouring using minimum curvature[J], Geophysics, 1974, 39 (1), 39-48.

Ash Johnson, Stephen Cheeseman, Julie Ferris, Improved compilation of Antarctic Peninsula magnetic data by new interactive grid suturing and blending methods, 2000.

PGW, GETECH, AGRS, CAG, China Aeromagnetic, Mapping Project (CHAMP), 1996-1999 Technical Report, 1999, V.1, P8-11.

Minty, B. R. S., P. R. Milligan, A. P. J. Luyendyk, and T. Mackey (2003), Merging airborne magnetic surveys into continental-scale compilations, Geophysics, 68, 988–995.

Paterson N, Reford S W, Kwan K CH, (1990): Continuation of magnetic data between arbitrary surfaces:Advances and applications, Society of Exploration Geophysicists Expanded Abstracts, P666-669.

Wang N D. (2004): The Aeromagnetic Anomaly Map of China and the Adjacent Sea Areas (1,5000000) (in Chinese) [M]. Beijing : Geological Publishing House.

YIN Hang, ZHOU Jian-xin, SHU Qing, et al. 2015. The key technologies for making the magnetic anomaly map (1,5,000,000) of China mainland, off shore and adjacent areas. Progress in Geophysics (in Chinese), 30 (5) :2107-2112, doi:10.6038/pg20150514.

Cordell L. (1985): Techniques, applications, and problems of analytical continuation of New Mexico aeromagnetic data between arbitrary surfaces of very high relief [C].//Proceedings of the International Meeting on Potential Fields in Rugged Topography. Institute of Geophysics, University of Lausanne, Switzerland, Bulletin No.7, p.96-99.

P. R. Milligan, R. Franklin, (2004): Abstract A new generation Magnetic Anomaly Grid Database of Australia (MAGDA), Preview 2004 (113) 1-40. Published: Australian Society of Exploration Geophysicists. pp. 25-29.

Cohen, Y., and J. Achache, (1990): New global vector magnetic anomaly maps derived from Magsat data, J. Geophys. Res., 95, 10, 783–10, 800.

Langel, R. A., and W. J. Hinze, (1998): The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective, Cambridge Univ. Press, New York.

Maus, S., H. Lu¨hr, and M. E. Purucker (2006), Simulation of the high-degree lithospheric field recovery for the swarm constellation of satellites, Earth Planets Space, 58, 397-407.

Phillips, J. D., R. L. Reynolds, and H. Frey, (1991): Crustal structure interpreted from magnetic anomalies, Rev. Geophys., 29, 416–427.

Ravat, D., R. A. Langel, M. Purucker, J. Arkani-Hamed, and D. E. Alsdorf, (1995): Global vector and scalar Magsat magnetic anomaly maps, J. Geophys. Res., 100, 20, 111–20, 136.

Ravat, D., K. A. Whaler, M. Pilkington, T. Sabaka, and M. Purucker, (2002): Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada, Geophysics, 67, 546-554.

Jong Sun Hwang, Hyung Rae Kim, Mancheol Suh et al.2010. Long-wavelength geopotential fields study of East Asia from satellite data.Chinese Journal Geophysics, 53 (6) : 1327-1335.