Temperature Effect on Non-Vacuum Solid State Diffusion Bonded Joints of Al 2014

Jump To References Section

Authors

  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru-572103, Visvesvaraya Technological University, Karnataka ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru-572103, Visvesvaraya Technological University, Karnataka ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru-572103, Visvesvaraya Technological University, Karnataka ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru-572103, Visvesvaraya Technological University, Karnataka ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru-572103, Visvesvaraya Technological University, Karnataka ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru-572103, Visvesvaraya Technological University, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/31983

Keywords:

Inter-diffusion, solid state bonding, TLP bonding, interface, microstructure

Abstract

Diffusion bonding is a joining process that relies on the inter-diffusion of atoms across the interface as the primary mechanism. Diffusion bonding techniques such as solid state and transient liquid phase (TLP) bonding are currently performed in a vacuum, which is a time-consuming, costly method and also limits the size of the components that can be bonded adequately. The present study aims at achieving the diffusion bonded joints of AA2014 under the bonding temperatures of 440, 460, and 480 0C. Microstructural evaluation is carried out using light optical microscopy (LOM), and scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) is used for elemental analysis on the interface of the bonded specimens. Hardness at the interface is evaluated using the Vickers Microhardness test.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Vatnalmath, M., Auradi, V., M, S., T R, J., M L, V., & K S, A. (2022). Temperature Effect on Non-Vacuum Solid State Diffusion Bonded Joints of Al 2014. Journal of Mines, Metals and Fuels, 70(8A), 246–251. https://doi.org/10.18311/jmmf/2022/31983

Issue

Section

Articles

 

References

Saleh, A. A. (2018). Effect of heat treatment on the mechanical properties of AA2014 alloy. Contemp Eng Sci, 11, 3409-3419. DOI: https://doi.org/10.12988/ces.2018.87345

Khan, T. I. (2013). Diffusion bonding of advanced alloys. In 2013 International Conference on Aerospace Science & Engineering (ICASE) (pp. 1- 4). IEEE. DOI: https://doi.org/10.1109/ICASE.2013.6785565

Fernandus, M. J., Senthilkumar, T., & Balasubramanian, V. (2011). Developing Temperature–Time and Pressure–Time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys. Materials & Design, 32(3), 1651-1656. DOI: https://doi.org/10.1016/j.matdes.2010.10.011

Wang, Y., Luo, G., Zhang, J., Shen, Q., & Zhang, L. (2012). Effect of silver interlayer on microstructure and mechanical properties of diffusion-bonded Mg–Al joints. Journal of alloys and compounds, 541, 458-461. DOI: https://doi.org/10.1016/j.jallcom.2012.06.120

Shu, J. C., Cao, M. S., Zhang, M., Wang, X. X., Cao, W. Q., Fang, X. Y., & Cao, M. Q. (2020). Molecular patching engineering to drive energy conversion as efficient and environment friendly cell toward wireless power transmission. Advanced Functional Materials, 30(10), 1908299. DOI: https://doi.org/10.1002/adfm.201908299

Liu, Y., Wang, G., Chen, Y., Kang, Q., Luo, S., Li, Z., ... & Sui, X. (2022). Air atmosphere diffusion bonding of Al–Mg–Li alloy using Cu nanocoating interlayer: Microstructural characterization and formation mechanisms. Materials & Design, 215, 110431. DOI: https://doi.org/10.1016/j.matdes.2022.110431

Dunford, D. V., & Partridge, P. G. (1992). Critical strength criteria for DB/SPF processing of Al-Li 8090 alloy. Journal of materials science, 27(12), 3389- 3394. DOI: https://doi.org/10.1007/BF01116041

Mori, M., Fukuda, Y., Kizaki, Y., Iida, A., & Saito, M. (1999). An investigation of stable bonding for Au–Al solid phase diffusion bonding techniques. Electronics and Communications in Japan (Part II: Electronics), 82(2), 11-20. DOI: https://doi.org/10.1002/(SICI)1520-6432(199902)82:2<11::AID-ECJB2>3.0.CO;2-T

Zuruzi, A. S., Li, H., & Dong, G. (1999). Diffusion bonding of aluminium alloy 6061 in air using an interface treatment technique. Materials Science and Engineering-A-Structural Materials, 259(1), 145- 148.

Kazakov, N. F. (1985). Translated from Russian Kuznetsov, BV,”Diffusion Bonding of Materials”. DOI: https://doi.org/10.1016/B978-0-08-032550-7.50008-4

Ureña, A., De Salazar, J. M., Quinones, J., Merino,S., & Martin, J. (1996). Diffusion bonding of an aluminium-lithium alloy (AA8090) using aluminium-copper alloy interlayers. Journal of materials science, 31(3), 807-817. DOI: https://doi.org/10.1007/BF00367902

Jia, Q., Lai, Z., Zhang, H., Bai, H., Zou, G., Pan, C., & Liu, L. (2020). Mechanism of ultrasonicassisted transient liquid phase bonding of 6061 Al alloy with cladded Zn-Al alloy in air. Journal of Materials Processing Technology, 286, 116823. DOI: https://doi.org/10.1016/j.jmatprotec.2020.116823

Pilling, J., & Ridley, N. (1987). Solid state bonding of superplastic AA 7475. Materials Science and Technology, 3(5), 353-359. DOI: https://doi.org/10.1179/mst.1987.3.5.353

Kolukisa, S. (2007). The effect of the welding temperature on the weldability in diffusion welding of martensitic (AISI 420) stainless steel with ductile (spheroidal graphite-nodular) cast iron. Journal of Materials Processing Technology, 186(1-3), 33-36. DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.148

Yildirim, S., & Kelestemur, M. H. (2005). A study on the solid-state welding of boron- doped Ni3Al–AISI 304 stainless steel couple. Materials Letters, 59(10), 1134-1137. DOI: https://doi.org/10.1016/j.matlet.2004.08.042

Atasoy, E., & Kahraman, N. (2008). Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Materials characterization, 59(10), 1481-1490. DOI: https://doi.org/10.1016/j.matchar.2008.01.015

Kurgan, N. (2014). Investigation of the effect of diffusion bonding parameters on microstructure and mechanical properties of 7075 aluminium alloy. The International Journal of Advanced Manufacturing Technology, 71(9), 2115-2124. DOI: https://doi.org/10.1007/s00170-014-5650-9