Investigation on Strain Sensitivity and Temperature Behaviour of Nitrogen Doped 3C-SiC Thin Films

Jump To References Section

Authors

  • Department of Electronics and Instrumentation Engineering, Siddaganga Institute of Technology, Tumakuru- 572103 ,IN
  • Department of Electronics and Instrumentation Engineering, Siddaganga Institute of Technology, Tumakuru ,IN
  • Department of Electronics and Instrumentation Engineering, Siddaganga Institute of Technology, Tumakuru- 572103 ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/31986

Keywords:

LPCVD, MTS, 3C-SiC thin film, TCR, strain sensitivity

Abstract

Electrical resistance-strain behaviour of nitrogen doped 3C-SiC thin films was investigated to determine whether they could be used as strain gauges. Using a hot wall vertical low pressure chemical vapour deposition (LPCVD) reactor, these films were deposited on thermally oxidised Si (100) and alumina substrates at 2.5 mbar pressure and 1040°C temperature from methyltrichlorosilane (MTS) precursor. The nitrogen doping gas utilised was ammonia (NH3). Using four-point bending method, the gauge factor (GF) was determined for all thin films (0, 9, 17, and 30 atomic % nitrogen doped). Systematic annealing of films in a vacuum atmosphere was used to determine the TCR of nitrogen doped 3C-SiC (111). Film sheet resistance was evaluated using a four-probe approach, and it was observed to decrease as the temperature rises from 40 to 550°C. The resistivity, average TCR, and strain sensitivity of film doped with 17 atomic % nitrogen concentration were 0.14 cm, -103 ppm/°C, and -9.6, respectively, indicating that it can be employed as a strain gauge material in high temperature applications. However, film doped with 30 atomic % of nitrogen concentration showed an increase in the resistivity, TCR and strain sensitivity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Latha, H., S, M., & Udayakumar, A. (2022). Investigation on Strain Sensitivity and Temperature Behaviour of Nitrogen Doped 3C-SiC Thin Films. Journal of Mines, Metals and Fuels, 70(8A), 266–272. https://doi.org/10.18311/jmmf/2022/31986

Issue

Section

Articles

 

References

Mehran Mehregany, Christian A Zorman, Narayanan Rajan, and Chien Hung Wu. (1998). Silicon Carbide MEMS for Harsh Environments. Proc. IEEE, vol. 86, no. 8, 1594-1610. DOI: https://doi.org/10.1109/5.704265

Gerhard H. Kroetz, Martin H. Eickhoff, and Helmut Moeller. (1999). Silicon compatible materials for harsh environment Sensors. Sensors and Actuators, 74, 182-189. DOI: https://doi.org/10.1016/S0924-4247(98)00296-9

Joseph S Shor, David Goldstein and Anthony D. Kurtz. (1993). Characterization of n-type beta - SiC as a piezoresistor. IEEE transactions on electron devices 40, 1093 - 1099 DOI: https://doi.org/10.1109/16.214734

Okojie R.S., Ned A.A., Kurtz A.D., Carr W.N. (1998). Characterization of highly doped n- and p-type 6H-SiC piezoresistors. Electron Devices. IEEE T. Electron. Dev.;45: 785– 790 DOI: https://doi.org/10.1109/16.662776

Dehe, A., Fricke, K., Mutamba, K. and Hartnagel, H. L, J. (1995). A piezoresistive GaAs pressure sensor with GaAs/AlGaAs membrane technology. Micromech. Microeng. 5, 139 DOI: https://doi.org/10.1088/0960-1317/5/2/021

Obermeier, E. (1995). High Temperature Microsensors Based on Polycrystalline Diamond Thin Films. Proceedings of 8th International Conference on Solid State Sensors and Actuators, Stockholm, Sweden, 178–181. DOI: https://doi.org/10.1109/SENSOR.1995.721774

Luo JK, Fu YQ, Le HR, Williams JA, Spearing SM, Milne WI (2007) “Diamond and diamond-like carbon MEMS”. J Micromech Microeng 17:S147– S163 DOI: https://doi.org/10.1088/0960-1317/17/7/S12

M. Werner, M. Adamschik, P. Gluche, E. Kohn, and H.-J. Fecht. (1998). Review on diamond based piezoresistive sensors. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE ‘98), vol. 1, 147-152 DOI: https://doi.org/10.1109/ISIE.1998.707766

K. N. Bhat and M. M. Nayak (2012). MEMS Pressure Sensors - An Overview of Challenges in Technology and Packaging. Inst. Smart Struct. Syst. J. Isss J. Isss, vol. 1, no. 1, 1–10.

Fraga MA, Furlan H, Pessoa RS, Rasia LA, Mateus CFR (2012) Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst Technol 18:1027–1033 DOI: https://doi.org/10.1007/s00542-012-1435-y

Chang-Min Ohn., and Gwiy-Sang Chung. (2006). ohmic contacts of Polycystalline 3C-SiC Thin- Films Grown on Si (100) Wafers for Microsensors of Vehicle Engines. 2006 International Forum on Strategic Technology (IFOST) IEEE,), 301-304.

J.S Shor, D Goldstein, A D Kurtz. (1991). Evaluation of ß-SiC for Sensors, Digest of Technical Papers, Transducers’ 91, San Francisco, IEEE, 912-915.

X. Song, S. Rajgolpal, J.M. Melzak, C.A. Zorman, and M.Mehregany. (2001). Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining. Mat. Sci. Forum, vol. 389-393, pp. 755-758, DOI: https://doi.org/10.4028/www.scientific.net/MSF.389-393.755

Hung-J Kuo, Christian A, Zorman and Mehran Mehregany.(2003). Fabrication and testing of single crystalline 3C-SiC devices using a novel SiC-on-insulator substrate. solid state sensors conference proceedings Boston, U.S.A., 742–745 DOI: https://doi.org/10.1109/SENSOR.2003.1215580

Dzung Viet Dao, Hoang-Phuong Phan, Afzaal Qamara and Toan Dinha .(2016). Piezoresistive effect of p-type single crystalline 3C-SiC on (111) plan. RSC Adv, 6, 21302-21307 DOI: https://doi.org/10.1039/C5RA28164D

Hoang-Phuong Phan, Dzung Viet Dao, Koichi Nakamura, Sima Dimitrijev, and Nam-Trung Nguyen (2015). The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review. Journal of Microelectromechanical Systems, 24, 6, 1663-1677 DOI: https://doi.org/10.1109/JMEMS.2015.2470132

Sangsoo Noh, Xiaoan Fu, Li Chen, Mehran Mehregany. (2007). A study of electrical properties and microstructure of nitrogendoped poly-SiC films deposited by LPCVD. Sensors and Actuators A 136, 613- 617 DOI: https://doi.org/10.1016/j.sna.2006.12.024

Wijesundara, Muthu B.J., Gao, Di, Carraro, Carlo, Howe, Roger T., Maboudian, Roya (2003) Nitrogen doping of polycrystalline 3C-SiC films grown using 1,3-disilabutane in a conventional LPCVD reactor. Journal of Crystal Growth, 259 (1). 18-25 DOI: https://doi.org/10.1016/S0022-0248(03)01573-2

Naoki Kubo, Takeshi Kawase, Shuichi Asahina, Nobuyuki Kanayama, Hiroshi Tsuda, Akihiro Moritani and Kuninori Kitahara. (2005). Epitaxial Growth of 3C-SiC on Si(111) Using Tetraethylsilane and Prevention of Void Formation at Heterointerfaces. J. Surface Finishing Society of Japan, 56, 227– 233 DOI: https://doi.org/10.4139/sfj.56.227

Gwiy-Sang CHUNG and Kang-San Kim. (2007). Characteristics of Poly-Crystalline 3C-SiC Thin Films Grown for Micro/Nano-Electromechanical Systems by Using Single-Precursor Hexamethyldisilane. Journal of the Korean Physical Society 51, 1389- 1394 DOI: https://doi.org/10.3938/jkps.51.1389

Chien C.Chiu, Seshu B. Desu and Gang Chen, Ching Yi Tsai, William T Reynolds Jr. (1995). Deposition of epitaxial â-SiC films on porous Si(100) from MTS in a hot wall LPCVD reactor. J. Mater. Res. 10, 1099–1107 DOI: https://doi.org/10.1557/JMR.1995.1099

M. A. Fraga, H. Furlan, R. S. Pessoa, M. Mass. (2014). Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview. Microsystem Technology, 20, 9-21 DOI: https://doi.org/10.1007/s00542-013-2029-z

M. A. Fraga H. Furlan M. Massi I. C. Oliveira. (2010). Effect of nitrogen doping on piezoresistive properties of a-Si x C y thin film strain gauges. Microsystem Technology, 16, 925-930. DOI: https://doi.org/10.1007/s00542-010-1033-9

A.Udayakumar, A Sri Ganesh, S. Raja, M. Balasubramanian (2011). Effect of intermediate heat treatment on mechanical properties of SiCf/ SiC composites with BN interphase prepared by ICVI. Journal of the European Ceramic Society. 31, 1145-1153 DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.12.018

Latha H K E, A. Udayakumar and V Siddeswara Prasad. (2015). Microstructure and electrical properties of nitrogen doped 3C–SiC thin films deposited using methyltrichlorosilane. Journal of Materials science in semiconductor processing, 29, 117-123 DOI: https://doi.org/10.1016/j.mssp.2013.12.017

Stroud. P.T. (1972). “Some effects of strain and temperature on the resistance of oxygen ion implanted titanium thin films”, Thin solid films, vol. 10, 205-215 DOI: https://doi.org/10.1016/0040-6090(72)90188-5

M. A. Fraga, H. Furlan, M. Massi, L. A. Rasia, and C. F. R. Mateus (2011). evaluation of the performance of piezoresistive strain sensors based on different semiconductor thin films. 21st Brazilian Congress of Mechanical Engineering, October 24-28,

Jingchun Zhang., Roger T. Howe., and Roya Maboudian. (2006). Electrical Characterization of n-Type Polycrystalline 3C- Silicon Carbide Thin Films Deposited by 1,3-Disilabutane. Journal of the Electrochemical Society, 153, G548-G551 DOI: https://doi.org/10.1149/1.2188327

Jingchun Zhang., Carlo carraro., Roger T Howe and Roya Maboudian (2007). Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments. Surface & Coatings Technology, 201, 8893-8898 DOI: https://doi.org/10.1016/j.surfcoat.2007.05.007