A Review Article on FeMnAlNi Shape Memory Alloy

Jump To References Section

Authors

  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumkur ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumkur ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumkur ,IN
  • Department of Mechanical Engineering, M.S. Ramaiah Institute of Technology, Bengaluru ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/31997

Keywords:

Shape memory alloy, Superelasticity, FeMnAlNi alloy

Abstract

Shape memory alloys (SMAs) are the materials which remember their original shape once after the deformation has occurred. In recent days, researchers started working on Fe-based shape memory alloys as NiTi shape memory alloys has few drawbacks. Febased shape memory alloys show better advantages over NiTi SMAs. FeMnAlNi SMA has advantage of wide range of operating temperature and low stress dependence. This review article provides information on work carried out on FeMnAlNi SMA which will help the researchers to carry further research work on the alloy for various applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Kumar R V, R., S, P., S H, A., & Kumara, P. C. A. (2022). A Review Article on FeMnAlNi Shape Memory Alloy. Journal of Mines, Metals and Fuels, 70(8A), 355–359. https://doi.org/10.18311/jmmf/2022/31997

Issue

Section

Articles

 

References

Kumar, P., & Kumar, S. (2014). Shape memory alloy (SMA) a multi-purpose smart material. International Journal of Engineering and Technical Research, 282-85.

Vasudha, N., & Rao, K. U. (2020, December). Shape memory alloy properties, modelling aspects and potential applications-a review. In Journal of Physics: Conference Series (Vol. 1706, No. 1, p. 012190). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1706/1/012190

Hodgson, D. E. (2004). Shape Memory Applications Inc., Ming H. Wu, Memry Technologies, and Robert J. Biermann, Harrison Alloys. Inc.“Shape Memory Alloys.

Sachdeva, R. C. L., Miyazaki, S., & Dughaish, Z. H. (2001). Nitinol as a biomedical material. Encyclopedia of materials: science and technology, 6155-6160. DOI: https://doi.org/10.1016/B0-08-043152-6/01093-7

Vanmeensel, K., Lietaert, K., Vrancken, B., Dadbakhsh, S., Li, X., Kruth, J. P., ... & Van Humbeeck, J. (2018). Additively manufactured metals for medical applications. In Additive manufacturing (pp. 261-309). Butterworth- Heinemann. DOI: https://doi.org/10.1016/B978-0-12-812155-9.00008-6

Wadood, A. (2016). Brief overview on nitinol as biomaterial. Advances in Materials Science and Engineering, 2016. DOI: https://doi.org/10.1155/2016/4173138

Alaneme, K. K., & Okotete, E. A. (2016). Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 19(3), 1582-1592. DOI: https://doi.org/10.1016/j.jestch.2016.05.010

Khalil, W., Saint-Sulpice, L., Chirani, S. A., Bouby, C., Mikolajczak, A., & Zineb, T.B. (2013). Experimental analysis of Fe-based shape memory alloy behavior under thermomechanical cyclic loading. Mechanics of Materials, 63, 1-11. DOI: https://doi.org/10.1016/j.mechmat.2013.04.002

Li, K., Dong, Z., Liu, Y., & Zhang, L. (2013). A newly developed Fe-based shape memory alloy suitable for smart civil engineering. Smart Materials and Structures, 22(4), 045002. DOI: https://doi.org/10.1088/0964-1726/22/4/045002

Mazzer, E. M., da Silva, M. R., & Gargarella, P. (2022). Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. Journal of Materials Research, 1-21. DOI: https://doi.org/10.1557/s43578-021-00444-7

Kajiwara, S. (1999). Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Materials Science and Engineering: A, 273, 67-88. DOI: https://doi.org/10.1016/S0921-5093(99)00290-7

Zhang, R., Sun, D., Ji, C., Chen, Y., Zhang, X., & Dong, Z. (2022). Shape Memory Effect and Martensitic Transformation in Fe–Mn–Al–Ni Alloy. Metals, 12(2), 247. DOI: https://doi.org/10.3390/met12020247

Ozcan, H., Ma, J., Karaman, I., Chumlyakov, Y. I., Santamarta, R., Brown, J., & Noebe, R. D. (2018). Microstructural design considerations in Fe-Mn- Al-Ni shape memory alloy wires: Effects of natural aging. Scripta Materialia, 142, 153-157. DOI: https://doi.org/10.1016/j.scriptamat.2017.07.033

Omori, T., Okano, M., & Kainuma, R. (2013). Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Materials, 1(3), 032103. DOI: https://doi.org/10.1063/1.4820429

Tseng, L. W., Ma, J., Hornbuckle, B. C., Karaman, I., Thompson, G. B., Luo, Z. P., & Chumlyakov, Y. I. (2015). The effect of precipitates on the superelastic response of [1 0 0] oriented FeMnAlNi single crystals under compression. Acta Materialia, 97, 234-244. DOI: https://doi.org/10.1016/j.actamat.2015.06.061

Leineweber, A., Walnsch, A., Fischer, P., & Schumann, H. (2021). Crystallography of Fe–Mn– Al–Ni Shape Memory Alloys. Shape Memory and Superelasticity, 7(3), 383-393. DOI: https://doi.org/10.1007/s40830-021-00339-w

Popa, M., Mihalache, E., Cojocaru, V. D., Guru, C., Guru, G., Cimpoe_u, N., ... & Bujoreanu, L. G. (2020). Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Fe-Based Alloys. Journal of Materials Engineering and Performance, 29(4), 2274-2282. DOI: https://doi.org/10.1007/s11665-020-04609-z

Humphreys, F. J., Prangnell, P. B., & Priestner, R. (2001). Fine-grained alloys by thermomechanical processing. Current Opinion in Solid State and Materials Science, 5(1), 15-21. DOI: https://doi.org/10.1016/S1359-0286(00)00020-6

Sidharth, R., Mohammed, A. S. K., Abuzaid, W., & Sehitoglu, H. (2021). Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi. Shape Memory and Superelasticity, 7(2), 235-249. DOI: https://doi.org/10.1007/s40830-021-00335-0

Kim, Y. B., Jee, K. K., & Choi, G. B. (2008). Fe-based nanocrystalline alloy powder cores with excellent high frequency magnetic properties. Journal of applied physics, 103(7), 07E704. DOI: https://doi.org/10.1063/1.2829243

Liu, Y., Zhang, J., Yu, L., Jia, G., Jing, C., & Cao, S. (2005). Magnetic and frequency properties for nanocrystalline Fe–Ni alloys prepared by highenergy milling method. Journal of Magnetism and Magnetic Materials, 285(1-2), 138-144. DOI: https://doi.org/10.1016/j.jmmm.2004.07.030

Abuzaid, W., Wu, Y., Sidharth, R., Brenne, F., Alkan, S., Vollmer, M., ... & Sehitoglu, H. (2019). FeMnNiAl iron-based shape memory alloy: promises and challenges. Shape Memory and Superelasticity, 5(3), 263-277. DOI: https://doi.org/10.1007/s40830-019-00230-9

Ozcan, H., Ma, J., Wang, S. J., Karaman, I., Chumlyakov, Y., Brown, J., & Noebe, R. D. (2017). Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scripta Materialia, 134, 66-70. DOI: https://doi.org/10.1016/j.scriptamat.2017.02.023

Vollmer, M., Arold, T., Kriegel, M. J., Klemm, V., Degener, S., Freudenberger, J., & Niendorf, T. (2019). Promoting abnormal grain growth in Febased shape memory alloys through compositional adjustments. Nature communications, 10(1), 1-10. DOI: https://doi.org/10.1038/s41467-019-10308-8

Rahman, R. A. U., Juhre, D., & Halle, T. (2018). Review of types, properties, and importance of ferrous based shape memory alloys. Korean Journal of Materials Research, 28(7), 381-390. DOI: https://doi.org/10.3740/MRSK.2018.28.7.381

Costanza, G., & Tata, M. E. (2020). Shape memory alloys for aerospace, recent developments, and new applications: A short review. Materials, 13(8), 1856. DOI: https://doi.org/10.3390/ma13081856

Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, 22-34. DOI: https://doi.org/10.1016/j.paerosci.2018.01.001

Weirich, A., & Kuhlenkötter, B. (2019, September). Applicability of shape memory alloys in aircraft interiors. In Actuators (Vol. 8, No. 3, p. 61). Multidisciplinary Digital Publishing Institute. DOI: https://doi.org/10.3390/act8030061

Mostaed, E., Sikora-Jasinska, M., Drelich, J. W., & Vedani, M. (2018). Zinc-based alloys for degradable vascular stent applications. Acta biomaterialia, 71, 1-23. DOI: https://doi.org/10.1016/j.actbio.2018.03.005

Francis, A., Yang, Y., Virtanen, S., & Boccaccini, A. R. (2015). Iron and iron-based alloys for temporary cardiovascular applications. Journal of Materials Science: Materials in Medicine, 26(3), 1- 16. DOI: https://doi.org/10.1007/s10856-015-5473-8

Review of Applications of Ferrous Based Shape Memory Smart Materialsin Engineering and in Biomedical Sciences

Miyazaki, S. (1999). Medical and dental applications of shape memory. Shape memory materials, 267.

Schinhammer, M., Hänzi, A. C., Löffler, J. F., & Uggowitzer, P. J. (2010). Design strategy for biodegradable Fe-based alloys for medical applications. Acta biomaterialia, 6(5), 1705-1713. DOI: https://doi.org/10.1016/j.actbio.2009.07.039

Cladera, A., Weber, B., Leinenbach, C., Czaderski, C., Shahverdi, M., & Motavalli, M. (2014). Ironbased shape memory alloys for civil engineering structures: An overview. Construction and building materials, 63, 281-293. DOI: https://doi.org/10.1016/j.conbuildmat.2014.04.032