A Review on Non-Linear and Mathematical Modelling for Stiffness Characteristics of Linear Motion Guide Ways

Jump To References Section

Authors

  • Kolhapur Institute of Technology (Autonomous), College of Engineering, Research Centre - Department of Technology, Shivaji University ,IN
  • Sant Gajanan Maharaj College of Engineering, Mahagaon ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32013

Keywords:

Linear Motion Guideways, Rolling Element, Stiffness, Combined Stiffness, Non-Linear Behaviour, Mathematical Model.

Abstract

Linear motion guide ways moves along a predetermined path. Linear Motion guide way features High Positioning, Repeatability, Low Frictional Resistance. Linear Motion guide ways finds wide applications in Aerospace, Automotive, Medical, Pharmaceutical, Machining Tools, Industrial Robots. The stiffness of a Linear Motion guide way is important for the static & dynamic behaviours of machine. The worldwide work focuses stiffness from load and deflection point which in turns help the designers and Machine tool manufacturers to build guide ways for suitable applications. Some studies reveals that the load (Vertical and Horizontal) and deflection in guide ways are having non-linear behaviour. Less work has been done till date considering the non-linear behaviour. Major studies have focussed on Vertical, while few have nominally considered horizontal loading. We wish to present a study considering effect of Vertical, Horizontal and Combined loading on Linear Motion guide ways. We also propose to develop a mathematical model to optimize the stiffness values for Linear Motion guide ways having different rolling elements. Studies done so far reveal clearly that this nature of study has not been undertaken till date and we expect that our work will benefit Research Scholars, Academic Institutes along with designers and Machine tool Manufacturers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Patil, S. B., & Sawan, S. H. (2022). A Review on Non-Linear and Mathematical Modelling for Stiffness Characteristics of Linear Motion Guide Ways. Journal of Mines, Metals and Fuels, 70(8A), 77–85. https://doi.org/10.18311/jmmf/2022/32013

Issue

Section

Articles

 

References

Shimizu S, Saito E, Uchida H, Sharma CS, Taki Y. Tribological studies of linear motion ball guide systems. Tribol Trans. 1998 Jan 1; 41(1): 49–59. DOI: https://doi.org/10.1080/10402009808983721

Chlebus E, Dybala B. Modelling and calculation of properties of sliding guideways. Vol. 39, International Journal of Machine Tools & Manufacture. 1999. DOI: https://doi.org/10.1016/S0890-6955(99)00041-3

Harsha SP, Sandeep K, Prakash R. Effects of Preload and N umber of Balls on Non-linear Dynamic Behaviour of Ball Bearing System) Email: surai(a)bits-pilani. ac. in. Vol. 4, Internat Journal of Non-linear Sciences ional and Numerical Simulation. 2003. DOI: https://doi.org/10.1515/IJNSNS.2003.4.3.265

Al-Bender F, Symens W. Characterization of frictional hysteresis in ball-bearing guideways. Wear. 2005 Jun; 258(11–12): 1630–42. DOI: https://doi.org/10.1016/j.wear.2004.11.018

Horng TL. An analytical solution of the stiffness equation for linear guideway type recirculating rollers with arbitrarily crowned profiles. Proc Inst Mech Eng Part C J Mech Eng Sci. 2009 Jun 1; 223(6): 1351–8. DOI: https://doi.org/10.1243/09544062JMES1208

Ohta H, Tanaka K. Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. J Tribol. 2010 Jan;132(1):1–9. DOI: https://doi.org/10.1115/1.4000277

Yuan Lin C, Pin Hung J, Liang Lo T. Effect of preload of linear guides on dynamic characteristics of a vertical columnspindle system. Int J Mach Tools Manuf. 2010 Aug;50(8):741–6. DOI: https://doi.org/10.1016/j.ijmachtools.2010.04.002

Shaw D, Su WL. Study of Stiffness of a Linear Guideway by FEA and Experiment. Vol. 5, SL. 2011.

Li L, Zhang JR. Parameters identification and dynamic analysis of linear rolling guide. In: Advanced Materials Research. 2011. p. 7–12. DOI: https://doi.org/10.4028/www.scientific.net/AMR.199-200.7

Hung JP, Lai YL, Lin CY, Lo TL. Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide. Int J Mach Tools Manuf. 2011 Sep; 51(9): 731–9. DOI: https://doi.org/10.1016/j.ijmachtools.2011.05.002

Dadalau A, Groh K, Reuß M, Verl A. Modeling linear guide systems with CoFEM: Equivalent models for rolling contact. Prod Eng. 2012 Feb; 6(1):39–46. DOI: https://doi.org/10.1007/s11740-011-0349-3

Mi L, Yin G fu, Sun M nan, Wang X hu. Effects of preloads on joints on dynamic stiffness of a whole machine tool structure. J Mech Sci Technol. 2012 Feb; 26(2):495–508. DOI: https://doi.org/10.1007/s12206-011-1033-4

Sakai Y, Tsutsumi M. Quantitative evaluation method for damping capacity of linear rolling bearings for feed drive mechanisms. In: Key Engineering Materials. Trans Tech Publications Ltd; 2012. p. 656–61. DOI: https://doi.org/10.4028/www.scientific.net/KEM.523-524.656

Wu JSS, Chang JC, Tsai GA, Lin CY, Ou FM. The effect of bending loads on the dynamic behaviors of a rolling guide. J Mech Sci Technol. 2012 Mar; 26(3): 671–80. DOI: https://doi.org/10.1007/s12206-011-1228-8

Shaw D, Su WL. Stiffness analysis of linear guideways without preload. J Mech. 2013 Jun; 29(2): 281–6. DOI: https://doi.org/10.1017/jmech.2012.136

Tao W, Zhong Y, Feng H, Wang Y. Model for wear prediction of roller linear guides. Wear. 2013 Jul 30; 305(1–2): 260–6. DOI: https://doi.org/10.1016/j.wear.2013.01.047

PaweBko P, BerczyDski S, Grzadziel Z. Modeling roller guides with preload. Arch Civ Mech Eng. 2014 Aug 5; 14(4): 691–9. DOI: https://doi.org/10.1016/j.acme.2013.12.002

Rahmani M, Bleicher F. Experimental Investigation of Over Determination In Machin E Tools Linear Guides Balanced ManufacturingBaMa View project CPPS-DC: Doctoral College on Cyber-Physical Production Systems View project Experimental investigation of over determination in machine tools linear guides [Internet]. 2015. Available from: https: // www.researchgate.net/publication /315751553

Sun W, Kong X, Wang B, Li X. Statics modeling and analysis of linear rolling guideway considering rolling balls contact. Proc Inst Mech Eng Part C J Mech Eng Sci. 2015 Jan 8; 229(1): 168–79. DOI: https://doi.org/10.1177/0954406214531943

Rahmani M, Bleicher F. Experimental and Numerical Studies of the Influence of Geometric Deviations in the Performance of Machine Tools Linear Guides. In: Procedia CIRP. Elsevier B.V.; 2016. p. 818–23. DOI: https://doi.org/10.1016/j.procir.2015.08.089

Shaukharova A, Liang Y, Feng H, Xu B. Study of Stiffness of Linear Guide Pairs by Experiment and FEA. World J Eng Technol. 2016; 04(03): 115–28. DOI: https://doi.org/10.4236/wjet.2016.43D015

Tsai PC, Cheng CC, Cheng YC. A Novel method based on operational modal analysis for monitoring the preload degradation of linear guideways in machine tools. Mech Eng J. 2017; 4(2): 16-00480-16–00480. DOI: https://doi.org/10.1299/mej.16-00480

Dunaj P, BerczyDski S, PaweBko P, Grzdziel Z, Chodzko M. Static condensation in modeling roller guides with preload. Arch Civ Mech Eng. 2019 Aug 1; 19(4): 1072–82. DOI: https://doi.org/10.1016/j.acme.2019.06.005

Kwon SW, Tong VC, Hong SW. Five-degrees-of-freedom model for static analysis of linear roller bearing subjected to external loading. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019 Apr 1; 233(8): 2920–38. DOI: https://doi.org/10.1177/0954406218792573

Tong VC, Khim G, Park CH, Hong SW. Linear ball guide design optimization considering stiffness, friction force, and basic dynamic load rating using particle swarm optimization. J Mech Sci Technol. 2020 Mar 1; 34(3): 1313–23. DOI: https://doi.org/10.1007/s12206-020-0230-4

Wang J, Zhang G, Wang L, Huang Y. Full-load analysis model and experimental study on the static characteristics of linear rolling guideway joints. Proc Inst Mech Eng Part C, J Mech Eng Sci. 2020 Aug 1; 234(16): 3318–31. DOI: https://doi.org/10.1177/0954406220914341

Xu M, Li C, Sun Y, Yang T, Zhang H, Liu Z, et al. Model and non-linear dynamic analysis of linear guideway subjected to external periodic excitation in five directions. Non-linear Dyn. 2021 Sep 1; 105(4):3061–92. DOI: https://doi.org/10.1007/s11071-021-06796-3