Experimental Investigation on Comparing Mechanical Properties in 3D Printed Polymers by Varying Process Parameter

Jump To References Section

Authors

  • Department of Mechanical Engineering, MITE, Moodabidri ,IN
  • Department of Mechanical Engineering, MITE, Moodabidri ,IN
  • Department of Mechanical Engineering, MITE, Moodabidri ,IN
  • Department of Mechanical Engineering, MITE, Moodabidri ,IN
  • Department of Mechanical Engineering, MITE, Moodabidri ,IN
  • Department of Mechanical Engineering, MITE, Moodabidri ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32030

Keywords:

3D Printing, Flexural & Tensile Characterization.

Abstract

The Desktop 3D printing is a quickly emergent additive manufacturing process due to its capacity to build complex geometry functional parts. Polymer filaments are used as a raw material for building various functional parts. 3D printing process parameters influence the mechanical properties of a built part. The present study investigate the effect of process parameters like layer thickness and layup speed on the mechanical properties of PLA, Bronze filled PLA and ABS samples manufactured with a low cost 3D printer. Tensile and flexural tests based on ASTM D638 and ASTM D760 standards were performed, respectively to determine the mechanical response of the printed specimens. With respect to the layup speed and layer thickness, it is found PLA has better tensile and flexural properties compared to ABS and Bronze filled PLA.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Aveen, K. P., Londe, N. V., Vikas, K., Lettigar, S. Y., Kishan Kumar, V., & Jagdish, D. (2022). Experimental Investigation on Comparing Mechanical Properties in 3D Printed Polymers by Varying Process Parameter. Journal of Mines, Metals and Fuels, 70(8A), 128–134. https://doi.org/10.18311/jmmf/2022/32030

Issue

Section

Articles

 

References

B. M. Tymrak, M. Kreiger, J. M. Pearce, Mechanical properties of components fabricated with open- source 3D printers under realistic environmental conditions, Materials and Design 58 (2014) 242–246.

M. Sugavaneswaran, G. Arumaikkannu, Analytical and experimental investigation on elastic modulus or reinforced additive manufactured structure, Materials and Design 66 (2015) 29–36. DOI: https://doi.org/10.1016/j.matdes.2014.10.029

G. W. Melenka, B. K. O. Cheung, J. S. Schofield, M. R. Dawson, J. P. Carey, Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures, Composite Structures 153 (2016) 866–875. DOI: https://doi.org/10.1016/j.compstruct.2016.07.018

M. Domingo, J. M. Puigriol, A. A. Garcia, J. Lluma, S. Borros, G. Reyes, Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts, Materials and Design 83 (2015) 670–677. DOI: https://doi.org/10.1016/j.matdes.2015.06.074

J. M. Chacon, J. C. Bellido, A. Donoso, Integration of topology optimized designs into CAD/CAM via an IGES translator, Structural and Multidisciplinary Optimization 50 (2014) 1115–1125. DOI: https://doi.org/10.1007/s00158-014-1099-6

Jain P and Kuthe A 2013 Feasibility study ofmanufacturing using rapid prototyping. FDMapproach.Procedia Engineering 63, 4-11. DOI: https://doi.org/10.1016/j.proeng.2013.08.275

M.L. Shofner, K. Lozano, F.J. Rodrý´guez-Macý´as, E.V. Barrera, Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11): 3081–3090 (2003). DOI: https://doi.org/10.1002/app.12496

M.L. Shofner, F.J. Rodrý´guez-Macý´as, R. Vaidyanathan, E.V. Barrera, Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Composites 34(12), 1207–1217 (2003). DOI: https://doi.org/10.1016/j.compositesa.2003.07.002

Vishu shah: Handbook of Plastic Testing Technology second Edition, New York (1998).

EsSaid,OsFoyos J, Noorani R, Mandelson M, Marloth R, Pregger BA. Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf. Process; 15(1):107–122, (2000). DOI: https://doi.org/10.1080/10426910008912976

A. Kreemer, Z.H. Moe, Rapid Prototyping using FDM systems, Handbook of Manufacturing Engineering and Technology; Springer, (2014) 2471-2483, ISBN 978- 1-4471-4669-8. DOI: https://doi.org/10.1007/978-1-4471-4670-4_38

J.Y. Wong, A.C. Pfahnl, 3D printing of surgical instruments for long-duration space missions. Aviation, Space, and Environmental Medicine, 85(7), (2014) 758-63. DOI: https://doi.org/10.3357/ASEM.3898.2014

Palacio J, Orozco V H, &López B L 2011 Effect of the molecular weight on the physicochemical properties ofpoly (lactic acid) nanoparticles and on the amount of ovalbumin adsorption J. Braz. Chem. Soc. 22, 2304-2311. DOI: https://doi.org/10.1590/S0103-50532011001200010

Ruellan A, Ducruet V, &Domenek S 2015 Plasticization of Poly (lactide) In Poly (Lactic Acid) Science and Technology. DOI: https://doi.org/10.1039/9781782624806-00124

Grimmelsmann N, Kreuziger M, Korger M, Meissner H &Ehrmann A 2015 Adhesion of 3D printed materialon textile substrates Rapid Prototyping

Behzad Rankouhi, Sina Javadpour, Fereidoon Delfanian, Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation,J Fail. Anal.andPreven. (2016) 16:467–481 DOI 10.1007/s11668-016-0113-2 DOI: https://doi.org/10.1007/s11668-016-0113-2

B.M. Tymrak, M. Kreiger, J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater.Des. 58, 242–246 (2014) DOI: https://doi.org/10.1016/j.matdes.2014.02.038

A.R. Torrado, D.A. Roberson, Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns. J Fail. Anal.Preven. 16(1), 154–164 (2016) DOI: https://doi.org/10.1007/s11668-016-0067-4

D. Croccolo, M. De Agostinis, G. Olmi, Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comp. Mat. Sci. 79, 506–518 (2013) DOI: https://doi.org/10.1016/j.commatsci.2013.06.041

A. Bellini, S. Gu¨c¸eri, Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9(4), 252–264 (2003) DOI: https://doi.org/10.1108/13552540310489631

S. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002) DOI: https://doi.org/10.1108/13552540210441166

Aveen, K. P., F. VishwanathBhajathari, and Sudhakar C. Jambagi. “3D Printing & Mechanical Characteristion of Polylactic Acid and Bronze Filled Polylactic Acid Components.” IOP Conference Series: Materials Science and Engineering. Vol. 376. No. 1. IOP Publishing, 2018. DOI: https://doi.org/10.1088/1757-899X/376/1/012042

Most read articles by the same author(s)