Force Sensitive Resistors : A New and Emerging Field of Research in Conducting Polymers

Jump To References Section

Authors

  • Medical Electronics, Bengaluru 560070 ,IN
  • Electrical and Electronics Engineering, Siddaganga Institute of Technology, Tumkuru ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32044

Keywords:

Conducting Polymers, Force Sensitive Resistors, Carbon Fillers, Electrical Percolation, Force Sensor, Quantum Tunnelling.

Abstract

Conducting polymers are fast evolving as a critical domain of research for industrial applications. With the advent of carbon conducting fillers, very high electrical conductivity of polymers is achieved. The polymers are biocompatible and are used for drug delivery, wearables and as sensors for industrial and medical electronics. Though the electrical conduction mechanisms are well correlated to the geometry, weight percentage and intrinsic properties of the conducting fillers, achieving a proper balance of electrical, mechanical and thermal properties has been a challenging task. This paper discusses the importance of conducting polymers in the development of force sensitive resistors which are extensively useful in industrial and medical applications. A brief review of conducting polymer matrices, conducting fillers and their properties which are critical for force sensing are discussed. Some of the important characteristic features of force sensing resistors are enumerated and few medical applications are presented.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Bhargav, S., & Sundara Rajan, J. (2022). Force Sensitive Resistors : A New and Emerging Field of Research in Conducting Polymers. Journal of Mines, Metals and Fuels, 70(8A), 215–221. https://doi.org/10.18311/jmmf/2022/32044

Issue

Section

Articles

 

References

Ben, J.; Song, Z.; Liu, X.; Lu, W.; Li, X. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors. Nanoscale Res. Lett. 2020, 15. DOI: https://doi.org/10.1186/s11671-020-03379-w

Kazemi, F.; Naghib, S.M.; Zare, Y.; Rhee, K.Y. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. Polym. Rev. 2020, 1–45.. DOI: https://doi.org/10.1080/15583724.2020.1858871

Diaz, A.F.; Kanazawa, K.K.; Gardini, G.P. Electrochemical polymerization of pyrrole. J. Chem. Soc. Chem. Commun. 1979, 635–636. DOI: https://doi.org/10.1039/c39790000635

Watanabe, A.; Tanaka, M.; Tanaka, J. Electrical and Optical Properties of a Stable Synthetic Metallic Polymer: Polypyrrole. Bull. Chem. Soc. Jpn. 1981, 54, 2278–2281. DOI: https://doi.org/10.1246/bcsj.54.2278

Biswas, S.; Drzal, L.T., Multi-layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance, supercapacitor electrodes. Chem. Mater. 2010, 22, 5667–5671. DOI: https://doi.org/10.1021/cm101132g

Bao, L.; Yao, J.; Zhao, S.; Lu, Y.; Su, Y.; Chen, L.; Zhao, C.; Wu, F. Densely Packed 3D Corrugated Papery Electrodes as Polysulfide Reservoirs for Lithium-Sulfur Battery with Ultrahigh Volumetric Capacity. ACS Sustain. Chem. Eng. 2020, 8, 5648–5661. DOI: https://doi.org/10.1021/acssuschemeng.0c00243

Tourillon, G.; Garnier, F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. Interfacial Electrochem., 1982, 135, 173–178. DOI: https://doi.org/10.1016/0022-0728(82)90015-8

Guillerez, S.; Bidan, G. New convenient synthesis of highly regioregular poly(3-octylthiophene) based on the Suzuki coupling reaction. Synth. Met. 1998, 93, 123–126 DOI: https://doi.org/10.1016/S0379-6779(97)04102-7

Heywang, G.; Jonas, F. Poly(alkylene dioxythiophene)s, New, very stable conducting polymers. Adv. Mater. 1992, 4, 116–118 DOI: https://doi.org/10.1002/adma.19920040213

Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. . DOI: https://doi.org/10.1039/C4CS00269E

Mei, H.; Zhang, C.; Wang, R.; Feng, J.; Zhang, T. Impedance characteristics of surface pressure-sensitivecarbon black/silicone rubber composites. Sens. Actuators A Phys. 2015, 233, 118–124. DOI: https://doi.org/10.1016/j.sna.2015.06.009

Verdejo, R.; Mills, N. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles. J. Biomech. 2004, 37, 1379–1386. DOI: https://doi.org/10.1016/j.jbiomech.2003.12.022

Leonel Paredes-Madrid, Arnaldo Matute, Jorge O. Bareño, Carlos A. Parra Vargas and Elkin I. Gutierrez Velásquez, “Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs).A Study on Creep Response and Dynamic Loading”, Materials 2017, 10, 1334. DOI: https://doi.org/10.3390/ma10111334

Mikrajuddin, A.; Shi, F.; Kim, H.; Okuyama, K. Size-dependent electrical constriction resistance for contacts of arbitrary size: From Sharvin to Holm limits. Mater. Sci. Semicond. Proc. 1999, 2, 321–327. DOI: https://doi.org/10.1016/S1369-8001(99)00036-0

Paredes-Madrid, L.; Palacio, C.; Matute, A.; Parra Vargas, C. Underlying Physics of conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions. Sensors 2017, 17 DOI: https://doi.org/10.3390/s17092108

J. Teixeira, L. Horta-Romarís, M.-J. Abad, P. Costa, S. Lanceros-Méndez, Piezoresistive response of extruded polyaniline/(styrene- butadiene-styrene) polymer blends for force and deformation sensors, Materials & Design, Volume 141, 2018, Pages 1-8. DOI: https://doi.org/10.1016/j.matdes.2017.12.011

Loganathan Veeramuthu, Manikandan Venkatesan, Jean-Sebastien Benas, Chia-Jung Cho, Chia-Chin Lee, Fu-Kong Lieu, Ja-Hon Lin, Rong-Ho Lee and Chi-Ching Kuo, Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors, Polymers 2021, 13, 4281. DOI: https://doi.org/10.3390/polym13244281

Susmitha Wils K, George Mathew, M. Manivannan, Suresh R Devasahayam, A Comparison of Pinch Force between Finger and Palm Grasp techniques in Laparoscopic Grasping, Engineering, 2012, 5, 46-49 doi:10.4236/eng.2012.410B012 Published Online October 2012. DOI: https://doi.org/10.4236/eng.2012.410B012

Sundar A, Das C, Low cost, high precision system for diagnosis of central sleep apnoea disorder, Proceedings of 2015 International Conference on Industrial Instrumentation and Control (ICIC 2015), Pg.354-359. DOI: https://doi.org/10.1109/IIC.2015.7150767