Application of Metal Oxide in Litho-Vanadium Glasses Containing Non-Magnetic Metal Ions: Physical and Optical Properties Analysis

Jump To References Section

Authors

  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35750

Keywords:

Basicity, Lithium, Metal Oxide, Refractive Index

Abstract

Sodium-modified litho-vanadium glasses containing non-magnetic Aluminium ions of composition 50Li2CO3 - (30-X) Na2 CO3- 20V2O5 -xAl2O3 (30 ≤ x ≥ 5) (LNVA) glasses were prepared by melt quenching technique. The density of the glass samples was measured and found to increase with the Aluminium content of the glass matrix. The measured values of refractive index and polaron radius of the glass network show opposite behaviour with an increase of Aluminium content. Through band gap energy and refractive index, Oxide ion polarizability and electronic polarizability were determined by using the Lorentz-Lorenz equation. The value of Oxide ion polarizability and electronic polarizability is found to be decreased with decreasing band gap energy and increasing refractive index. The value of optical basicity was measured using electronic polarizability and is found to be decreased with decreasing inter-nuclear distance. The band gap energy values of the glass network were found to decrease from 3.241 to 2.134 eV. The metallisation criterion of the glass material was calculated and found to decrease with Aluminium content.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-01-12

How to Cite

., B., Madhavi, K., Gowda, V. C. V., & Hanumantharaju, N. (2024). Application of Metal Oxide in Litho-Vanadium Glasses Containing Non-Magnetic Metal Ions: Physical and Optical Properties Analysis. Journal of Mines, Metals and Fuels, 71(11), 1919–1924. https://doi.org/10.18311/jmmf/2023/35750
Received 2023-11-30
Accepted 2023-12-22
Published 2024-01-12

 

References

Paramesh SO, Hanumantharaju N, Gowda VVC, Venkateshulu A. Influence of Boron ions on physical and optical properties of Gd3+ ions doped Lithium borate glasses. Sambodhi. 2021; 44:2249-6661.

Isard JO. The mixed Alkali effect in glass. J Non-Cryst Solids. 1969; 1:235-261.https://doi.org/10.1016/0022- 3093(69)90003-9 DOI: https://doi.org/10.1016/0022-3093(69)90003-9

Maass P, Bunde A, Ingram MD. Ion transport anomalies in glasses. Phys Rev Lett. 1992; 68:3064. https://doi. org/10.1103/PhysRevLett.68.3064 PMid:10045598 DOI: https://doi.org/10.1103/PhysRevLett.68.3064

Greaves GN, Ngai KL. Reconciling ionic-transport properties with atomic structure in Oxide glasses. Phys Rev B. 1995; 52:6358. https://doi.org/10.1103/ PhysRevB.52.6358 PMid:9981865 DOI: https://doi.org/10.1103/PhysRevB.52.6358

Ratnakaram YC, Sreekanth Chakradhar RP, Ramesh KP, Rao JL, Ramakrishna J. The effect of host glass on optical absorption and fluorescence of Nd3+ in xNa2O– (30− x)K2O–70B2O3 glasses. J Phys Condens Matter. 2003; 15:6715. DOI: https://doi.org/10.1088/0953-8984/15/40/009

Chakradhar RPS, Ramesh KP, Rao JL, Rama-Krishna J. Mixed alkali effect in borate glasses- EPR and optical absorption studies in xNa2O–(30−x)K2O–70B2O3 glasses doped with Mn2+. J Phys Chem Solids. 2003; 64:641. https://doi.org/10.1016/S0022-3697(02)00365-7 DOI: https://doi.org/10.1016/S0022-3697(02)00365-7

El-Damrawi G, Moustafa YM, Meikhail MS. Phase separation and NMR studies on Sodium Boro-silicate glasses containing V2O5. Mans Sci Bull C (Nat Sci). 1993; 20:83-97.

Singh K, Ratnam JS. Electrical conductivity of the Li2OB 2O3 system with V2O5. Solid State Ionics. 1988; 31:221-6. https://doi.org/10.1016/0167-2738(88)90272-X DOI: https://doi.org/10.1016/0167-2738(88)90272-X

Khattak GD, Salim MA, Wenger LE, Gilani AH. X-ray Photoelectron Spectroscopy (XPS) and magnetic susceptibility studies of copper– vanadium phosphate glasses. J Non-Cryst Solids. 2000; 262:66-79. https://doi. org/10.1016/S0022-3093(99)00700-0 DOI: https://doi.org/10.1016/S0022-3093(99)00700-0

Rao RB, Veeraiah N. Study on some physical properties of Li2O–MO–B2O3: V2O5 Glasses. Physica B. 2000; 348:256-71. DOI: https://doi.org/10.1016/j.physb.2003.12.012

Dawy M, Salama AH. Electrical and optical properties of some Sodium borate glasses. Mater Chem Phys. 2001; 71:137-47. DOI: https://doi.org/10.1016/S0254-0584(01)00280-2

Dimitrov V, Sakka S. Linear and nonlinear optical properties of simple Oxides. II. J Appl Phys. 1996; 79:1741-5. https://doi.org/10.1063/1.360963 DOI: https://doi.org/10.1063/1.360963

Bhatia B, Meena SL, Parihar V, Poonia M. Optical basicity and polarizability of Nd3+ doped bismuth borate glasses. New J Glas Ceram. 2015; 44-52. DOI: https://doi.org/10.4236/njgc.2015.53006

Eevon C, Halimah MK, Zakaria A, Azurahanim CAC, Azlan MN, Faznny MF. Linear and nonlinear optical properties of Gd3+ doped zinc borotellurite glasses for all-optical switching applications. Results Phys. 2016; 6:761-6. https://doi.org/10.1016/j.rinp.2016.10.010 DOI: https://doi.org/10.1016/j.rinp.2016.10.010

Ismail RA. Characteristics of bismuth triOxide film prepared by rapid thermal oxidation. J Surf Sci Nanotech. 2006; 4:563-5. https://doi.org/10.1380/ejssnt.2006.563 DOI: https://doi.org/10.1380/ejssnt.2006.563

Guo H, Wang Y, Gong Y, Yin H, Mo Z, Tang Y, Chi L. Optical band gap and photoluminescence in heavily Tb3+ doped GeO2 -B2O3 -SiO2 -Ga2O3 magneto-optical glasses. 2016; 686:635-40. https://doi.org/10.1016/j.jallcom.2016.06.074 DOI: https://doi.org/10.1016/j.jallcom.2016.06.074

Pavani PG, Sadhana K, Chandra Mouli V. Optical, physical and structural studies of boro-zinc tellurite glasses. Phys B Condens Matter. 2011; 406(6–7):1242–7. https://doi.org/10.1016/j.physb.2011.01.006 DOI: https://doi.org/10.1016/j.physb.2011.01.006

Dimitrov V, Komatsu T. An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J Univ Chem Technol Metall. 2010; 45:219-50.

Duffy JA. Electronic polarisability and related properties of the Oxide ion. Phys Chem Glasses. 1989; 30:1-4.

Hammad AH, Abdelghany A. Optical and structural investigations of zinc phosphate glasses containing vanadium ions. J Non-Crystal Solids. 2016; 433:14-9. https://doi.org/10.1016/j.jnoncrysol.2015.11.016 DOI: https://doi.org/10.1016/j.jnoncrysol.2015.11.016

Meena SL, Bhatia B. Polarizability and optical basicity of Er3+ ions doped zinc Lithium bismuth borate glasses. J Pure Appl Ind Phys. 2016; 6(10):175-83.

Dimitrov V, Komatsu T. Classification of oxide glasses: A polarizability approach Journal of solid state chemistry. 2005; 178 (2005):831-46. https://doi.org/10.1016/j.jssc.2004.12.013 DOI: https://doi.org/10.1016/j.jssc.2004.12.013

Duffy JA, Ingram MD. An interpretation of glass chemistry in terms of the optical basicity concept. J non-cryst Solids. 1976; 21:373-410. https://doi. org/10.1016/0022-3093(76)90027-2 DOI: https://doi.org/10.1016/0022-3093(76)90027-2

Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple Oxides. J Appl Phys. 1996; 79:1736-40. https://doi.org/10.1063/1.360962 DOI: https://doi.org/10.1063/1.360962

Most read articles by the same author(s)