Facile Synthesis of Spinel Zinc Aluminate Using Biofuel For Effective Photocatalytic Dye Degradation And Electrochemical Sensor Studies

Jump To References Section

Authors

  • Department of Chemistry, M. S. Ramaiah Institute of Technology, Bengaluru - 560054, Karnataka ,IN
  • Department of Physics, Dayananda Sagar College of Engineering, Bengaluru - 560111, Karnataka ,IN
  • Department of Chemistry, New Horizon College of Engineering, Bengaluru - 560103, Karnataka ,IN
  • Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru - 560111, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36051

Keywords:

Photocatalysis, Sensors, ZnAl2O4

Abstract

Zinc aluminate nanomaterial provide a potential candidate for photocatalytic and sensor applications. Using biofuel (banana peel powder), zinc aluminate was synthesized by SCM (solution combustion method) in the current study. The properties of the phase structures, chemical composition, morphologies, and photocatalytic sensors were characterized by utilizing powder X-ray diffraction, scanning electron microscope, CH analyzer, UV-Visible spectroscopy, and photocatalytic reactor. Indigo Carmine (IC) dye degradation under UV light was used to assess the photocatalytic activity. The results showed that zinc aluminate makes a superior photocatalyst for degrading organic dyes like indigo carmine. In a potassium hydroxide electrolyte medium, zinc aluminate was also an effective substance for paracetamol and lead metal sensing. The results confirm that the novel material could be used for various industrial applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-30

How to Cite

Gurushantha, K., Keshavamurthy, K., Shashidhar, S., & Meena, S. (2023). Facile Synthesis of Spinel Zinc Aluminate Using Biofuel For Effective Photocatalytic Dye Degradation And Electrochemical Sensor Studies. Journal of Mines, Metals and Fuels, 71(11), 2222–2228. https://doi.org/10.18311/jmmf/2023/36051

 

References

Charinpanitkul T, Poommarin P, Wongkaew A, Kim K. Dependence of zinc aluminate microscopic structure on its synthesis. J Ind Eng Chem. 2009; 15:163–166. https:// doi.org/10.1016/j.jiec.2008.09.017. DOI: https://doi.org/10.1016/j.jiec.2008.09.017

Ben Ayadi Z, El Mir L, Djessas K, Alaya S. Electrical and optical properties of aluminum-doped zinc oxide sputtered from an aerogel nanopowder tar- get. Nanotechnology. 2007; 18:445702. https://doi. org/10.1088/0957-4484/18/44/445702. DOI: https://doi.org/10.1088/0957-4484/18/44/445702

Kong XY, Ding Y, Yang R, Wang ZL. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science. 2004; 303:1348–1352. https://doi. org/10.1126/science.1092356. DOI: https://doi.org/10.1126/science.1092356

Galetti AE, Gomez MF, Arrúa LA, Abello MC. General Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming. Appl Catal A. 2010; 380:40–47. https:// doi.org/10.1016/j.apcata.2010.03.024. DOI: https://doi.org/10.1016/j.apcata.2010.03.024

Lenarda M, Casagrande M, Moretti E, Storaro L, Frattini R, Polizzi S. Selective catalytic low pressure hydrogenation of acetophenone on Pd/ZnO/ZnAl2O4. Catal Lett. 2007; 114:79–84. https://doi.org/10.1007/s10562-007- 9046-4. DOI: https://doi.org/10.1007/s10562-007-9046-4

Zawadzki M, Staszak W, Lopez-Suarez FE, Illan-Gomez MJ, Bueno-Lopez A. General Preparation, character- ization and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels. Appl Catal A. 2009; 371:92–98. https://doi.org/10.1016/j.apcata.2009.09.035. DOI: https://doi.org/10.1016/j.apcata.2009.09.035

Pugnet V, Maury S, Coupard V, Dandeu A, Quoineaud A, Bonneau JL, Tichit D. General Stability, activity and selectivity study of a zinc aluminate heterogeneous cata- lyst for the transesterification of vegetable oil in batch reactor. Appl Catal A. 2010; 374:71–78. https://doi. org/10.1016/j.apcata.2009.11.028. DOI: https://doi.org/10.1016/j.apcata.2009.11.028

Staszak W, Zawadzki M, Okal J. Solvothermal synthe- sis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion. J Alloys Compd. 2010; 492:500–507. https://doi.org/10.1016/j.jall- com.2009.11.151. DOI: https://doi.org/10.1016/j.jallcom.2009.11.151

Luiz E, Battiston S, Marimon J, Moro M, Severo L, Pereira F, et al. Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous Mesoporous Mater. 2012; 163:29– 33. https://doi.org/10.1016/j.micromeso.2012.06.039. DOI: https://doi.org/10.1016/j.micromeso.2012.06.039

Fabian M, Elias A, Kostova N, Briančin J, Baláž P. Photocatalytic Activity of Nanocrystalline Gahnite (ZnAl2O4) Synthesized by Ball Milling. Proc 12th Int Multidiscip Sci Geo Conf. 2012; 491–498. https://doi. org/10.5593/sgem2012/s12.v3008. DOI: https://doi.org/10.5593/sgem2012/s12.v3008

Chaudhary A, Mohammad A, Mobin SM. Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater Sci Eng B. 2018; 227:136–144. https://doi.org/10.1016/j. mseb.2017.10.009. DOI: https://doi.org/10.1016/j.mseb.2017.10.009

Trisna A, Pradana S. An improved method for high pho- tocatalytic performance of ZnAl2O4 spinel derived from layered double hydroxide precursor. SN Appl Sci. 2020; 2:842. https://doi.org/10.1007/s42452-020-2682-7. DOI: https://doi.org/10.1007/s42452-020-2682-7

Han D. Low-temperature synthesis and photolumines- cence properties of oriented ZnAl2O4 nanowire arrays. Superlattices Microstruct. 2017; 111:1093–1098. https:// doi.org/10.1016/j.spmi.2017.08.012. DOI: https://doi.org/10.1016/j.spmi.2017.08.012

Mehrotra RC, Singh A, Sogani S. Homo- and Hetero- metallic Alkoxides of Group 1,2, and 12 Metals. Chem Soc Rev. 1994; 23:215–225. https://doi.org/10.1039/ CS9942300215. DOI: https://doi.org/10.1039/cs9942300215

Wang S, Sun G, Fang L, Lei L, Xiang X, Zu X. A compar- ative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence mate- rials. Sci Rep. 2015; 5:12849. https://doi.org/10.1038/ srep12849. DOI: https://doi.org/10.1038/srep12849

Phys ZT. Ein Beitrag Zur Optik Der Farbanstriche. Z Techn Phys. 1931; 12:593–601.

Sinha R, Roy N, Rajasekhar R, Karnawat A, Mandal TK. N-doped carbon dot from cigarette-tobacco: Picric acid sensing in real water sample and synthesis of CD-MWCNT nano-composite for UV-photodetection. J Environ Chem Eng. 2021; 9:104971. https://doi. org/10.1016/j.jece.2020.104971. DOI: https://doi.org/10.1016/j.jece.2020.104971

Dhar S, Chakraborty P, Majumder T, Mondal SP. Acid Treated PEDOT: PSS Polymer and TiO2 Nanorods Acid Treated PEDOT: PSS Polymer and TiO2 Nanorods Schottky Junction Ultraviolet Photodetectors with Ultrahigh External Quantum Efficiency, Detectivity and Responsivity. ACS Appl Mater Interfaces. 2018; 10:41618–41626. https://doi.org/10.1021/ acsami.8b12643. DOI: https://doi.org/10.1021/acsami.8b12643

Gurushantha K, Anantharaju KS, Kottam N, Keshavamurthy K, Ravikumar CR, Surendra BS, et al. Synthesis of ZrO2: Dy3+ Nanoparticles: Photoluminescent, Photocatalytic, and Electrochemical Sensor Studies. Adsorpt Sci Technol. 2022; 2022:5664344. https://doi. org/10.1155/2022/5664344. DOI: https://doi.org/10.1155/2022/5664344

Meena S, Anantharaju KS, Malini S, Arjun Dey, Renuka L, Prashantha SC, Vidya YS. Impact of temperature- induced oxygen vacancies in polyhedron MnFe2O4 nanoparticles: As excellent electrochemical sensor, supercapacitor and active photocatalyst. Ceram Int. 2021; 47:14723–14740. DOI: https://doi.org/10.1016/j.ceramint.2020.12.217

Meena S, Anantharaju KS, Vidya YS, Renuka L, Malini S, Sharma SC, et al. MnFe2O4/ZrO2 nanocomposite as an efficient magnetically separable photocatalyst with good response to Sunlight: Preparation, characterization and catalytic mechanism. SN Appl Sci. 2020; 2:328. https:// doi.org/10.1007/s42452-020-2086-8. DOI: https://doi.org/10.1007/s42452-020-2086-8