Phytotoxicity Study of Biogenic Mono-Metallic and Bi- Metallic (Au-Ag) Alloy Nps

Jump To References Section

Authors

  • Research Scholar, Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Kolkata - 700121 ,IN
  • Research Scholar, Department of Physics, University of Kalyani, Kalyani, West Bengal - 741235 ,IN
  • Research Scholar, Department of Computer Science, West Bengal State University, Barasat, West Bengal - 700126 ,IN
  • Assistant Professor, Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Kolkata - 700121 ,IN
  • Assistant Professor, Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Kolkata - 700121 ,IN
  • Assistant Professor, Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Kolkata - 700121 ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36097

Keywords:

Bimetallic, Germination and Seedling Growth, Gold-Silver Nanoparticles, Monometallic, Phytotoxicity Study

Abstract

Our findings of this study report the phytotoxicity assessment of biogenic bimetallic alloy (Au-Ag) NPs with monometallic counterparts (AgNPs and AuNPs) on Rice seed germination in respect of seedling growth and germination percentage. The phytotoxicity study of all three NPs on Rice seed indicates that seed germination percentage, root and shoot growth is not affected (upto 60 μg/ml) with biogenic (Au-Ag) NPs and AuNPs while, AgNPs had little phytotoxicity responses at higher concentration (40 μg/ml) level. So, ecological safe and sustainable biogenic alloy (Au-Ag) NPs promise potential nanocatalyst- based application for remediation of the hazardous dye from wastewater and other relevant areas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-30

How to Cite

Banik, R. D., Mandal, R. K., Das, B., Pal, P., Baksi, S., & Ghosh, S. (2023). Phytotoxicity Study of Biogenic Mono-Metallic and Bi- Metallic (Au-Ag) Alloy Nps. Journal of Mines, Metals and Fuels, 71(11), 2084–2088. https://doi.org/10.18311/jmmf/2023/36097

 

References

Mukherjee A, Mondal R, Biswas S, Saha S, Ghosh S, Kole RK. Dissipation behaviour and risk assessment of fipronil and its metabolites in paddy ecosystem using GC-ECD and confirmation by GC-MS/MS. Heliyon. 2021 May 1; 7(5). DOI: https://doi.org/10.1016/j.heliyon.2021.e06889

Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires AR. Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Science of The Total Environment. 2020 Jan 20;701:134816. DOI: https://doi.org/10.1016/j.scitotenv.2019.134816

Mandal RK, Ghosh S, Majumder TP. Comparative study between degradation of dyes (MB, MO) in monotonous and binary solution employing synthesized bimetallic (Fe-CdO) NPs having antioxidant property. Results in Chemistry. 2023 Jan 1; 5:100788. DOI: https://doi.org/10.1016/j.rechem.2023.100788

Bootharaju MS, Pradeep T. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir. 2012 Feb 7; 28(5): 2671-9. DOI: https://doi.org/10.1021/la2050515

Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photo- catalytic properties. Advances in Colloid and Interface Science. 2016 Mar 1; 229:80-107. DOI: https://doi.org/10.1016/j.cis.2015.12.008

Drake PL, Hazelwood KJ. Exposure-related health effects of silver and silver compounds: a review. Annals of Occupational Hygiene. 2005 Oct 1; 49(7):575-85.

Levard C, Hotze EM, Lowry GV, Brown Jr GE. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmental Science and Technology. 2012 Jul 3; 46(13):6900-14. DOI: https://doi.org/10.1021/es2037405

Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009 May 1; 75(7):850-7. DOI: https://doi.org/10.1016/j.chemosphere.2009.01.078

Botha TL, Elemike EE, Horn S, Onwudiwe DC, Giesy JP, Wepener V. Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Scientific Reports. 2019 Mar 12; 9(1):4169. DOI: https://doi.org/10.1038/s41598-019-40816-y

Ghosh S, Roy S, Naskar J, Kole RK. Process optimization for biosynthesis of mono and bimetallic alloy nanoparticle catalysts for degradation of dyes in individual and ternary mixture. Scientific Reports. 2020 Jan 14; 10(1):277. DOI: https://doi.org/10.1038/s41598-019-57097-0

Kim DY, Saratale RG, Shinde S, Syed A, Ameen F, Ghodake G. Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. Journal of Cleaner Production. 2018 Jan 20; 172:2910-8. DOI: https://doi.org/10.1016/j.jclepro.2017.11.123

Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment. 2016 Dec 15; 573:1089-102. DOI: https://doi.org/10.1016/j.scitotenv.2016.08.120

Budhani S, Egboluche NP, Arslan Z, Yu H, Deng H. Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. Journal of Environmental Science and Health, Part C. 2019 Oct 2; 37(4):330-55. DOI: https://doi.org/10.1080/10590501.2019.1676600

Kumar V, Guleria P, Kumar V, Yadav SK. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of the Total Environment. 2013 Sep 1; 461:462-8. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.018

Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry. 2017 Jan 1; 110:2-12. DOI: https://doi.org/10.1016/j.plaphy.2016.07.030

Zaka M, Abbasi BH. Effects of bimetallic nanoparticles on seed germination frequency and biochemical characterisation of Eruca sativa. IET nanobiotechnology. 2017 Apr; 11(3):255-60. DOI: https://doi.org/10.1049/iet-nbt.2016.0004

Kumari R, Singh JS, Singh DP. Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiology and Biochemistry. 2017 Jan 1; 110:158-66. DOI: https://doi.org/10.1016/j.plaphy.2016.06.001

Ghosh S, Rana D, Sarkar P, Roy S, Kumar A, Naskar J, Kole RK. Ecological safety with multifunctional applications of biogenic mono and bimetallic (Au–Ag) alloy nanoparticles. Chemosphere. 2022 Feb 1; 288:132585. DOI: https://doi.org/10.1016/j.chemosphere.2021.132585