Experimental Investigation on Fracture Toughness Of Hydrogen Embrittled Cu-Al-Be Shape Memory Alloy

Jump To References Section

Authors

  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumkur – 572103, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36098

Keywords:

Cu-Al-Be, Fracture Toughness, Hydrogen Embrittlement, KIC, Shape Memory Alloy, Shape Memory Effect

Abstract

Copper based Shape Memory Alloys (SMAs) possess good Shape Memory Effect (SME) and Superelasticity and the alloys are prone to corrosion due to atmospheric conditions. The SMAs absorb hydrogen which results in hydrogen embrittlement which affects the SMAs characteristics. The fracture toughness of the hydrogen embrittled alloys were estimated for compositions of ternary Alloy-Beryllium (0.47 by weight %) under uniaxial tensile testing (Mode –I type). Strain energy release rate and Stress Intensity factors were determined. 0.47 wt. % of Be in the SMA has the higher fracture toughness and the stress Intensity factor is directly proportional and strain energy release rate is inversely proportional with the increase in Crack length.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-30

How to Cite

Prashantha, S. (2023). Experimental Investigation on Fracture Toughness Of Hydrogen Embrittled Cu-Al-Be Shape Memory Alloy. Journal of Mines, Metals and Fuels, 71(11), 2089–2094. https://doi.org/10.18311/jmmf/2023/36098

 

References

Asaoka K, Yokoyama K, Nagumo M. Hydrogen embrittlement of nickel-titanium alloy in biological envi- ronment. Metall Mater Trans A. 2002; 33(3):495-501. https://doi.org/10.1007/s11661-002-0111-8 DOI: https://doi.org/10.1007/s11661-002-0111-8

Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. Eur J Orthodont. 2006; 28:298-304. https://doi.org/10.1093/ ejo/cji102 PMid:16428255 DOI: https://doi.org/10.1093/ejo/cji102

Prashantha S, Auradi V, Nagral M, Patil S. Effect of hydrogen embrittlement on the characteristics of cop- per-based shape memory alloy. Journal of Mines, Metals and Fuels; 2021:159-62. https://doi.org/10.18311/ jmmf/2021/30148 DOI: https://doi.org/10.18311/jmmf/2021/30148

Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002; 23:1995- 2002. https://doi.org/10.1016/S0142-9612(01)00328-3 PMid:11996041 DOI: https://doi.org/10.1016/S0142-9612(01)00328-3

Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials. 2004; 25:4535-42. https://doi.org/10.1016/j.biomaterials.2003.11.042 PMid:15120498 DOI: https://doi.org/10.1016/j.biomaterials.2003.11.042

Harris EF, Newman SM, Nicholson JA. Nitinol arch wire in a simulated oral environment, changes in mechanical properties, Am J Orthod. 1988; 93508-513.

Hudgins JJ, Bagby MD, Erickson LC. The effect of long-term deflection on permanent deformation of nickel-titanium archwires. J Angle orthod. 1990; 60:283-88.

Miyazaki S, Otsuka K. Development of shape memory alloys. Journal de Physique. 1983; 29(5):353-77. https:// doi.org/10.2355/isijinternational.29.353 DOI: https://doi.org/10.2355/isijinternational.29.353

Swamy MKR, Prashantha S, Mallikarjun US. Characterization of Cu-Al-Be shape memory alloys. IOSR Journal of Mechanical and Civil Engineering. 2012.

Dieter GE. Mechanical Metallurgy, SI edition. Singapore: McGraw-Hill; 1988. p. 348-68.

Ibrahim RN, Stark HL. Validity requirements for fracture toughness measurements from small circumferentially notched cylindrical specimens. Journal of Engineering Fracture Mechanics. 1987; 28(4):455-60. https://doi. org/10.1016/0013-7944(87)90190-1 DOI: https://doi.org/10.1016/0013-7944(87)90190-1

Letaief WE, Hassine T, Gamaoun F. Tensile behaviour of superelastic NiTi alloys charged with hydrogen under applied strain. Materials Science and Technology. 2017; 33(13):1533-8. https://doi.org/10.1080/02670836.2017.1 320084 DOI: https://doi.org/10.1080/02670836.2017.1320084

Yokoyama K, Hamada K, Moriyama K, Asaoka K. Degradation and fracture of Ni-Ti superelastic wire in an oral cavity. Biomaterials. 2001; 22:2257-62. https://doi. org/10.1016/S0142-9612(00)00414-2 PMid:11456065 DOI: https://doi.org/10.1016/S0142-9612(00)00414-2

Gamaoun F, Hassine T, Bouraoui T. Strain rate response of a Ni-Ti shape memory alloy after hydrogen charging. Phil Mag Lett. 2014; 94(1):30-6. https://doi.org/10.1080 /09500839.2013.855330 DOI: https://doi.org/10.1080/09500839.2013.855330

Gamaoun F, Ltaief M, Bouraoui T, Zineb. Effect of hydrogen on the tensile strength of aged Ni- Ti superelastic alloy. J Intel Mat Syst Str. 2011; 22(17):2053-9. https:// doi.org/10.1177/1045389X11423427 DOI: https://doi.org/10.1177/1045389X11423427