Microstructure-Based Finite Element Analysis Of Composites

Jump To References Section

Authors

  • Department of Mechanical Engineering, Sri Jayachamarajendra College of Engineering, Mysuru – 570006, Karnataka ,IN
  • Department of Mechanical Engineering, JSS Science and Technology University, Mysuru – 570006, Karnataka ,IN
  • Department of Mechanical Engineering, JSS Science and Technology University, Mysuru – 570006, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36101

Abstract

Synthesized Al6061-TiB2 composite material by varying wt.% of TiB2 through In-situ process by adding 1.5% Mg to evaluate mechanical properties. It is noticed that the tensile, impact strength and hardness of the composites increases with increase in wt.% of TiB2 with reduces in ductility. Microstructure analyses were conducted through SEM to observe the distribution, presence and formation TiB2 particles and found that particles were homogeneously distributed and EDX analysis confirms the presence of TiB2. Later, SEM images are converted into 2-D models using Matlab, FE analysis was conducted using ANSYS software to evaluate the stress at the matrix and reinforcement interface. The information revealed from this study is useful in design and selection of Al 6061-TiB2 AMCs for various applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-30

How to Cite

Mallesh, G., Manjunatha, H. S., & Pavankumar, R. (2023). Microstructure-Based Finite Element Analysis Of Composites. Journal of Mines, Metals and Fuels, 71(11), 2044–2055. https://doi.org/10.18311/jmmf/2023/36101

 

References

Mallesh G, Manjunatha HS, Kumar VGP, Rakesh DR. Mechanical and tribological properties of aluminum Al6061 alloy reinforced with SiCp. International Journal of Emerging Technology and Advanced Engineering.

; 5:111-7.

Mallesh G, Pavankumar R, Kumar VP, Naik LL. Synthesis and characterization of Al 7072-Al2O3 metal matrix composites. Trends in Manufacturing and Engineering Management: Select Proceedings of ICMechD 2019. 2021:167-81. https://doi.org/10.1007/978-981-15-4745- 4_16 DOI: https://doi.org/10.1007/978-981-15-4745-4_16

Manjunatha HS, Mallesh G, Kumar VGP. Mechanical characterization of aluminum-TiB2 metal matrix composites by in-situ method. International Research Journal of Engineering and Technology. 2020; 07.

Ramesh CS, Keshavamurthy R, Subramanian G, Bharath KR. High cycle fatigue life prediction of Al6061-TiB2 in-situ composites. Procedia Materials Science. 2014; 6:1455-69. https://doi.org/10.1016/j.mspro.2014.07.125 DOI: https://doi.org/10.1016/j.mspro.2014.07.125

Fei CH, Wang TM, Chen ZN, Feng MA, Qiang HA, Cao ZQ. Microstructure, mechanical properties and wear behaviour of Zn-Al-Cu-TiB2 in situ composites. Transactions of Nonferrous Metals Society of China. 2015; 25(1):103-11. https://doi.org/10.1016/S1003- 6326(15)63584-1 DOI: https://doi.org/10.1016/S1003-6326(15)63584-1

Naher S, Brabazon D, Looney L. Simulation of the stir casting process. Journal of Materials Processing Technology. 2003; 143:567-71. https://doi.org/10.1016/ S0924-0136(03)00368-6 DOI: https://doi.org/10.1016/S0924-0136(03)00368-6

Singla M, Dwivedi DD, Singh L, Chawla V. Development of aluminium based silicon carbide particulate metal matrix composite. Journal of Minerals and Materials Characterization and Engineering. 2009; 8(06):455. https://doi.org/10.4236/jmmce.2009.86040 DOI: https://doi.org/10.4236/jmmce.2009.86040

Kumar GV, Rao CS, Selvaraj N. Studies on mechanical and dry sliding wear of Al6061-SiC composites. Composites Part B: Engineering. 2012; 43(3):1185-91. https://doi. org/10.1016/j.compositesb.2011.08.046 DOI: https://doi.org/10.1016/j.compositesb.2011.08.046

El-Sabbagh A, Soliman M, Taha M, Palkowski H. Hot rolling behaviour of stir-cast Al 6061 and Al 6082 alloys- SiC fine particulates reinforced composites. Journal of Materials Processing Technology. 2012; 212(2):497-508. https://doi.org/10.1016/j.jmatprotec.2011.10.016 DOI: https://doi.org/10.1016/j.jmatprotec.2011.10.016

El-Sabbagh AM, Soliman M, Taha MA, Palkowski H. Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-cast- ing. Journal of Materials Processing Technology. 2013; 213(10):1669-81. https://doi.org/10.1016/j.jmatpro- tec.2013.04.013 DOI: https://doi.org/10.1016/j.jmatprotec.2013.04.013

Xie F, Xue ZH. Characterizing an in situ TiB2 particulates reinforced aluminium-based composite and its heat treatment. Physics Procedia. 2013; 50:13-8. https://doi.org/10.1016/j.phpro.2013.11.004 DOI: https://doi.org/10.1016/j.phpro.2013.11.004

Selvaganesan M, Suresh S. Production and characterization of Al 6061-TiB2 metal matrix composites. International Journal of Engineering Research and Technology. 2013; 2(11).

Zhong LH, Zhao YT, Zhang SL, Gang CH, Shuai CH, Liu YH. Microstructure and mechanical properties of in situ TiB2/7055 composites synthesized by direct magnetochemistry melt reaction. Transactions of Nonferrous Metals Society of China. 2013; 23(9):2502-8. https://doi. org/10.1016/S1003-6326(13)62761-2

Peng Z, Fuguo L. Microstructure-based simulation of plastic deformation behavior of SiC particle reinforced Al matrix composites. Chinese Journal of Aeronautics. 2009; 22(6):663-9. https://doi.org/10.1016/S1000- 9361(08)60156-9 DOI: https://doi.org/10.1016/S1000-9361(08)60156-9

Sajjadi SA, Ezatpour HR, Parizi MT. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compocasting processes. Materials and Design. 2012; 34:106-11. https://doi.org/10.1016/j.matdes.2011.07.037 DOI: https://doi.org/10.1016/j.matdes.2011.07.037

Kalaiselvan K, Murugan N, Parameswaran S. Production and characterization of AA6061-B4C stir cast composite. Materials and Design. 2011; 32(7):4004-9. https:// doi.org/10.1016/j.matdes.2011.03.018 DOI: https://doi.org/10.1016/j.matdes.2011.03.018

Rajan HM, Ramabalan S, Dinaharan I, Vijay SJ. Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Materials and Design. 2013; 44:438-45. https://doi.org/10.1016/j.matdes.2012.08.008 DOI: https://doi.org/10.1016/j.matdes.2012.08.008

Zhong LH, Zhao YT, Zhang SL, Gang CH, Shuai CH, Liu YH. Microstructure and mechanical properties of in situ TiB2/7055 composites synthesized by direct magnetochemistry melt reaction. Transactions of Nonferrous Metals Society of China. 2013; 23(9):2502-8. https://doi. org/10.1016/S1003-6326(13)62761-2 DOI: https://doi.org/10.1016/S1003-6326(13)62761-2

Niranjan K, Lakshminarayanan PR. Optimization of process parameters for in situ casting of Al/TiB2 composites through response surface methodology. Transactions of Nonferrous Metals Society of China. 2013; 23(5):1269- 74. https://doi.org/10.1016/S1003-6326(13)62592-3 DOI: https://doi.org/10.1016/S1003-6326(13)62592-3

Duzcukoglu H, Çetintürk S. Effect of boron addition on mechanical properties of 60SiCr7 steel. International Journal of Materials, Mechanics and Manufacturing. 2015; 2:117-20. https://doi.org/10.7763/IJMMM.2015. V3.178 DOI: https://doi.org/10.7763/IJMMM.2015.V3.178

Ramesh CS, Pramod S, Keshavamurthy R. A study on microstructure and mechanical properties of Al 6061-TiB2 in-situ composites. Materials Science and Engineering: A. 2011 May; 528(12):4125-32. https://doi. org/10.1016/j.msea.2011.02.024 DOI: https://doi.org/10.1016/j.msea.2011.02.024

Ramesh CS, Ahamed A, Channabasappa BH, Keshavamurthy R. Development of Al 6063-TiB2 in situcomposites. Materials and Design. 2010; 31(4):2230-6. https://doi.org/10.1016/j.matdes.2009.10.019 DOI: https://doi.org/10.1016/j.matdes.2009.10.019

Chawla N, Chawla KK. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. Journal of Materials Science. 2006; 41:913-25. https://doi.org/10.1007/s10853-006-6572-1 DOI: https://doi.org/10.1007/s10853-006-6572-1