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Abstract 
In this overview, information on the chemistry, sources, contents, and pharmacological properties of two flavones, namely, 
tricetin (TCT) and tricin (TC), is updated. TCT occurs mainly in honey and pollen of plant species belonging to the genus 
Eucalyptus of the family Myrtaceae. TC is found in monocotyledon species of the family Poaceae, occurring mainly in cereal 
crops such as oats, barley, rice, wheat, and corn, and in bamboo species. The chemical structure of TCT contains two hydroxyl 
(OH) groups at C5 and C7 of ring A and three OH groups at C3’, C4’, and C5’ of ring B, with no methoxy (OCH3) groups. TC 
has two OH groups at C5 and C7 of ring A, two OCH3 groups at C3’ and C5’, and one OH group at C4’ of ring B, i.e., at both 
sides of the C4’ OH group. This renders greater bioavailability, higher metabolic stability, and better intestinal absorption 
to TC than TCT. In this overview, TCT and TC have eight and seven studies on anti-cancer properties, and 14 and 31 studies 
on other pharmacological properties, respectively. Both flavones are equally strong in terms of cytotoxicity towards cancer 
cells. With greater bioavailability, higher metabolic stability, and better intestinal absorption, the other pharmacological 
properties of TC are stronger than TCT, but not for anti-cancer properties.
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1. Introduction

Flavones are an important class of flavonoids. Found 
in more than 70 plant families, flavones have been 
reported in all plant parts including above- and below-
ground, and vegetative and reproductive organs1. Food 
sources of flavones are tea leaves, herbs, fruit juice, 
wine, honey, fruits, vegetables, cereals, and legumes2. 

Flavones (e.g., apigenin and luteolin) have a C6–
C3–C6 molecular formula consisting of a three-ring 
skeleton3. They differ from other flavonoids by having a 
C2–C3 double bond, a a carbonyl group (ketone) at C4 
but lack a C3 hydroxyl group at ring C2-4. In addition, 
most flavones have a hydroxyl group at C5 and C7 
of ring A and/or C3’ and C4’ of ring B. Functionally, 
methylated flavones have better intestinal absorption 
and metabolic stability than non-methylated flavones5. 
Methylation also enhances their properties such as 
anticancer, immuno-modulation and antioxidant 
activities6,7. Examples of methylated flavones with 
one methoxy group are diosmetin, acacetin and 
chrysoeriol8,9. Examples of Polymethylated Flavones 
(PMFs) with five and six methoxy (OCH3) groups are 
tangeretin and nobiletin, respectively10. Methylated 
flavones containing only one or two OCH3 groups 
are metabolically more stable and superior in chemo 
preventive properties than PMF6. 

Besides their functions in plant biochemistry, 
physiology, and ecology, flavones are important 
compounds for human health and nutrition. There is 
increasing scientific evidence for flavones having health-
promoting functions such as antioxidant, antibacterial, 
antiviral, anti-inflammatory, anti-cancer, anti-estrogenic, 
anti-atherosclerotic, and anti-allergic activities1,3. 

In this overview, the information on the chemistry, 
sources, contents, and pharmacological properties of two 
flavones, namely, tricetin and tricin, is updated. Their 
pharmacological properties are divided into anti-cancer 
and other pharmacological properties. Data used in the 
overview are procured from online databases including 
those of Google, Google Scholar, Science Direct, 
PubMed, PubMed Central, PubChem, and J-Stage.

2. Chemistry

Tricetin (TCT) or 5,7,3’,4’,5’-pentahydroxyflavone has 
a molecular formula of C15H10O7 and a molecular 

weight of 302.2 g/mol (Figure 1). The aglycone has 
two hydroxyl (OH) groups at C5 and C7 of ring A, and 
three OH groups at C3’, C4’, and C5’ of ring B. Ring C is 
oxygenated at position 1 and has a double bond at C2 to 
C3 and a carbonyl group (ketone) at C4. The molecular 
structure of TCT is similar to myricetin except that the 
latter is a flavonol that bears an OH group at C3. Rings 
A and B are benzene rings that form the benzoyl system 
and cinnamoyl system, respectively, while ring C is a 
heterocyclic system1. Together, the three rings form the 
flavone backbone of TCT.

Figure 1. Molecular structure of tricetin and tricin.

Tricin (TC) or 5,7,4’-trihydroxy-3’,5’-dimethoxy 
flavone has a C17H14O7 molecular formula and 330.3 
g/mol molecular weight (Figure 1). The aglycone has 
two hydroxyl groups at C5 and C7 of ring A. There is 
one OH group at C4’, and on both sides are two OCH3 
groups at C3’ and C5’ of ring B. Similar to TCT, ring C 
of TC is also oxygenated at position 1, and has a double 
bond at C2 to C3 and a carbonyl (C=O) group at C4. 
TC has one OH group at C4’ of the B ring and two 
OCH3 groups at C3’ and C5’, i.e., at both sides of the C4’ 
OH group. This renders greater bioavailability, better 
metabolic stability and higher intestinal absorption  
to TC11. 

Multiple OH groups in flavonoids confer substantial 
antioxidant activity, and methoxy groups increase 
lipophilicity and improve membrane partitioning12. 
A double bond and C=O group increase activity by 
affording more stable flavonoids. In addition, methylated 
flavonoids have greater metabolic stability and better 
permeability to cell membranes during intestinal 
absorption5,7. The structure-activity relationship of PMF 
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polymethoxylated flavones showed a correlation in the 
pattern of methoxylation, i.e., the number/position of 
OCH3 groups, and anti-proliferative activity towards 
cancer cells13,14. Towards the inhibition of HL60 leukemic 
cells, an increase in the number of OCH3 groups at ring 
A enhanced the activity of PMFs, whereas an increase in 
OCH3 groups at ring B reduced activity14. 

3. Sources

TCT occurs in honey and pollen of 27 plant species 
(Table 1). They belong mostly to species of the genus 
Eucalyptus (11), and the family Myrtaceae (19). Besides 

honey and pollen, TCT has been reported in the leaf of 
Gingko biloba, the resin of Heliotropium zeylanicum, the 
aerial part of Inga fendleriana, the fruit juice of Morinda 
citrifolia, the whole plants of Potentilla discolour, flower 
of Punica granatum, and root of Rhodiola quadrifida. 
The foliage of Eucalyptus crebra and Morinda citrifolia 
are shown in Figure 2.

TC is found in most monocotyledon species 
notably the family Poaceae26. The aglycone is most 
commonly reported in cereal crops (bran, hull, husk, 
grain, lignin, and leaf) such as oats, barley, rice, 
wheat, and corn (Table 2). It is also found in the leaf 
of bamboo species that include Phyllostachys (2) 

Table 1. Plant and product sources of tricetin

S. No. Species Common name Family Source References

1 Banksia ericifolia Heath Myrtaceae Honey 15

2 Eucalyptus camaldulensis Red river gum Myrtaceae Honey 16

3 E. crebra Narrow-leaf ironbark Myrtaceae Honey 17

4 E. globoidia Stringybark Myrtaceae Honey 17

5 E. globulus Southern blue gum Myrtaceae Pollen 18

6 E. intermedia Bloodwood Myrtaceae Honey 17

7 E. largiflorin Black box Myrtaceae Honey 17

8 E. melliodora Yellow box Myrtaceae Honey 16

9 E. moluccana Gum top Myrtaceae Honey 17

10 E. nubila Blue top ironbark Myrtaceae Honey 17

11 E. ochrophloia Yapunyah Myrtaceae Honey 17

12 E. pilligaensis Mallee Myrtaceae Honey 16

13 Ginkgo biloba Maiden hair tree Ginkgoaceae Leaf 19

14 Guioa semiglauca Crow ash Myrtaceae Honey 15

15 Helianthus annuus Sunflower Asteraceae Honey 15

16 Heliotropium zeylanicum Heliotrope Boraginaceae Resin 20

17 Inga fendleriana Shimbillo Fabaceae Aerial part 21

18 Kunzea ericoides White tea tree Myrtaceae Pollen 18

19 Leptospermum scoparium Broom tea tree Myrtaceae Pollen 18

20 Lophostemon conferta Brush box Myrtaceae Honey 15

21 Melaleuca quinquenervia Tea tree Myrtaceae Honey 15

22 Metrosideros excelsa NZ Christmas tree Myrtaceae Pollen 18

23 M. umbellata Southern Rata Myrtaceae Pollen 18

24 Morinda citrifolia Noni Rubiaceae Fruit juice 22

25 Potentilla discolor Cinquifoil Rosaceae Whole plant 23

26 Punica granatum Pomegranate Lythraceae Flower 24

27 Rhodiola quadrifida Rhodiola Crassulaceae Root 25
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Figure 2. (L−R) Eucalyptus crebra, Morinda citrifolia, Avena sativa, and Sasa albo-marginata.

Table 2. Plant and product sources of tricin

S. No. Species Common name Family Source References

1 Agelaea pentagyna Agelaea Connaraceae Leaf 27

2 Avena sativa Oat Poaceae Bran 26

Hull 28

Lignin 29

3 Brachypodium distachyon Brachypodium Poaceae Lignin 29

4 Casearia arborea Gia Verde Salicaceae Leaf 30

5 Hordeum vulgare Barley Poaceae Leaf and grain 26

6 Oryza sativa Rice Poaceae Bran 31,32

Hull and straw 29

7 Phyllostachys glauca Bamboo Poaceae Leaf 26

8 P. nigra Bamboo Poaceae Leaf 26,33

9 Sasa albo-marginata Bamboo Poaceae Leaf 34-38

10 S. borealis Bamboo Poaceae Leaf 26

11 S. senanensis Bamboo Poaceae Leaf 26

12 S. veitchii Bamboo Poaceae Leaf 26

13 Saccharum sp. Sugarcane Poaceae Bagasse and stem 29

14 Triticum aestivum Wheat Poaceae Leaf, husk and bran 26

15 T. durum Wheat Poaceae Straw 29

16 Valeriana laxiflora Valerian Caprifoliaceae Root 39

17 Zea mays Corn Poaceae Leaf and stem 26,29

18 Zizania latifolia Wild rice Poaceae Aerial part 40,41

and Sasa (4) with Sasa albo-marginata most often 
reported. Cereal crops include the leaf, husk, and bran 
of wheat (Triticum aestivum); leaf and grain of barley 
(Hordeum vulgare); leaf and stem of corn (Zea mays); 
bran, hull, and lignin of oat (Avena sativa); and bran, 
hull, and straw of rice (Oryza sativa)26. The foliage of 
S. albo-marginata and A. sativa are shown in Figure 2.

4. Contents

The content of TCT in Eucalyptus intermedia and 
E. ochrophloia honey was 24.6% and 27.4% out of 
60.2% and 75.3% of total flavonoids, respectively17. 
The content of myricetin in E. intermedia honey was 
slightly higher at 35.6%. E. ochrophloia honey does 
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not contain myricetin. The total content of flavonoids 
in Melaleuca quinquenervia honey was 6.35 mg/100 g 
honey with TCT amounting to 1.0 mg/100 g honey15. 
The content of TCT in the ethanol aerial part extract of 
Inga fendleriana was 5.88 µg/mg21. 

Cereal crops have been reported to be a rich source 
of TC in dry weight. Among the grasses, the highest 
content of TC (33.1, 32.7, and 28.0 mg/g of lignin) 
was reported in oats, wheat, and brachypodium, 
respectively29. TC was a major bioactive compound 
in the ethyl acetate extract of oat hull28. Its content 
was 18 mg/kg, constituting 9.6% of the total phenolic 
compounds. In Manchurian wild rice, the content of 
TC ranged from 16.5−25.0 mg/100 g depending on 
the enzyme treatment and duration of extraction40. 
In different plant parts of winter wheat, the content of 
TC was the highest in the hull (772 mg/kg) followed 
by the leaf (253 mg/kg) and the bran (45 mg/kg)42. 
The content of TC in different cereal crops has been 
quantified to be 23.6, 21.5, and 17.9 µg/g in sprouts of 
rice, millet, and barley43, and 1006 and 454 mg/kg in 
straws of wheat and rice, respectively44. A comparison 
between the TC content in the bran of different rice 
varieties showed that Njavara (1930 mg/kg) has the 
highest content, followed by Palakkadan Matta (120 
mg/kg) and Sujatha (48.6 mg/kg)45.

5. Pharmacological Properties

Recently, the pharmacological properties of TCT 
against cancer and diabetes have been reviewed46,47. 
Cancers involve breast, lung, and liver cancer, including 
adenocarcinoma, osteosarcoma and glioblastoma, 
and diabetes including associated disorders such 
as inflammation, osteosarcoma, glioblastoma, and 
atherosclerosis. Bioactivities of TCT involving multi-
drug resistance, antioxidant and α-glucosidase 
inhibition have been briefly mentioned. TC possesses 
anti-allergy, anti-HIV, anti-inflammatory, antioxidant, 
antiulcer, anti-viral, anti-diabetic, anti-obesity, anti-
tyrosinase, immuno-modulatory, antibacterial, 
antifungal, anti-histaminic, and anti-tubercular 
activities48,49. 

5.1  Anti-cancer Activities
TCT inhibited the growth of MCF-7 breast cancer 
cells with an IC50 value of 32.2 µM50. Against Hep 

G2 and PLC/PRF/5 liver cancer cells, IC50 values of 
TCT were 4.87 and 4.23 μM, respectively51. Breast, 
liver, lung, oral, and nasopharyngeal cancer cells 
including glioblastoma, osteosarcoma, and leukaemia 
are susceptible to TCT (Table 3).

TC inhibited the proliferation of MDA-MB-468 
breast, MCF-7 breast, HT-29 colon, and SW480 colon 
cancer cells with IC50 values of 65.7, 104, 55.2, and 
105 µM31. Against HBL100 breast and HCEC colon 
non-cancer cells, inhibition was 77.3 and 84.5 µM, 
respectively. Inhibition of colony formation by TC 
towards SW480 colon (16 µM) and MDA-MB-468 
breast (0.6 µM) cancer cells was stronger than caffeic 
acid and protocatechuic acid31. Colon, breast, pancreas, 
prostate, and lung cancer cells including glioma are 
susceptible to TC (Table 3).

5.2 Other Pharmacological Properties
Other pharmacological properties of TCT include 
anti-inflammatory, anti-diabetic, poly (ADP-ribose) 
polymerase (PARP) inhibitory, Breast Cancer 
Resistance Protein (BCRP) or Adenosine Triphosphate 
(ATP)-binding cassette transporter G2 (ABCG2) 
inhibitory, Acetylcholinesterase (AChE) inhibitory, 
anti-gastric, neuroprotective, lipid inhibitory, and 
antioxidant activities (Table 4). Anti-inflammatory (5) 
and anti-diabetic (2) properties represent the major 
activities of TCT. 

Other pharmacological properties of TC 
include anti-viral, anti-inflammatory, anti-obesity, 
cyclooxygenase (COX) inhibitory, anti-tubercular, skin 
photoaging inhibitory, anti-hepatic stellate (HS) cells, 
anti-tyrosinase, anti-histaminic, anti-angiogenesis, 
anti-diabetic, anti-leishmanial, osteoblastogenesis, 
acute colitis amelioration, neuroprotective, immuno-
regulatory, c-Jun N-terminal kinase (JNK) inhibitory, 
and pneumonia attenuation activities (Table 4). Anti-
viral (6), anti-inflammatory (5), anti-obesity (4), 
and cyclooxygenase (COX) inhibitory (2) properties 
represent the major activities of TCT. 

5.3  Structure-activity Relationship
The chemical structure of TC contains two OCH3 
groups at C3’ and C5’, and one OH group at C4’ of 
ring B, i.e., at both sides of the C4’ OH group (Figure 
1). TCT has three OH groups at C3’, C4’, and C5’, with 
no OCH3 groups. This renders greater bioavailability, 
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Table 3. Anti-cancer activities of tricetin (TCT) and tricin (TC)

Compound, cancer cell 
line and cancer type

Effect and mechanism References

Tricetin

MCF-7 (breast) TCT inhibited the growth of cancer cells by inducing cell cycle arrest and 
apoptosis, convened by activation of caspase-9, inhibition of p53-MDM2, and 
stabilization of p53.

50

HepG2 and PLC/PRF/5 
(liver)

TCT induced apoptosis of cancer cells via the mitochondrial and DR5 cell death 
pathways and mediated by ROS generation and JNK activation.

51

H460 (lung) TCT reversed BaP-mediated bone resorption activity of cancer cells by 
suppressing cancer bone metastasis. 

52

HSC-3, SCC-9 and OECM-1 
(oral)

TCT suppressed the migration of cancer cells by reducing MMP-9 expression 
and down-regulating the MAPK signalling pathway.

53

HONE-1, NPC-39 and NPC-
BM (nasopharyngeal)

TCT inhibited the migration of cancer cells by down-regulating PS-1 activity and 
inhibiting the Akt/GSK-3β pathway.

54

GBM 8401 and U87 
(glioblastoma)

TCT suppressed the migration and/or invasion of cancer cells by inhibiting 
MMP-2 via the modulation of SP-1 expression and transcriptional activity. When 
combined with an ERK inhibitor (ERK-DN), a better anti-invasive effect was 
observed than tricetin treatment alone.

55

HOS and U2OS 
(osteosarcoma)

TCT (up to 80 µM) inhibited the migration and invasion of cancer cells by down-
regulation of MMP-9 expression via p38 and Akt signalling pathways.

56

HL-60 (leukaemia) TCT induced apoptosis of leukaemia cells through a ROS- and JNK-mediated 
pathway. The anticancer activity of tricetin was enhanced when combined with an 
ERK inhibitor.

57

Tricin

Adenocarcinomas (colon) Dietary administration of mice with TC suppressed AOM/DSS-induced colon 
carcinogenesis by inhibiting TNF-α in the early phase, and MI and ABI in the later 
phase.

58

HT-29 and Colon26-Luc 
(colon) 

TC inhibited the viability and migration of cancer cells with IC50 values of 108 
and 34 µM. Inhibition involved the down-regulation of phosphorylated Akt, 
ERK1/2, and NF-κB, and by significantly suppressing cell motility, respectively.

43

MDA-MB-468 (breast) TC inhibited the growth of cancer cells by cell cycle arrest and not by apoptosis. 
However, the anti-cancer effect of TC was not reflected in nude mice bearing 
tumor in vivo.

59

HepG2 (liver) and IN383/12 
(pancreas)

TC was cytotoxic to cancer cells with IC50 values of 15 and 7.5 µM, respectively. 42

PC3 (prostate) TC potentiated the effect of docetaxel by significantly decreasing miR-21 in the 
treatment of cancer cells.

60

LLC cells (lung) TC inhibited the tumor growth primarily by suppressing PRKCA/SPHK/S1P and 
anti-apoptotic signalling. 

61

C6 (glioma) TC inhibited the proliferation and invasion of cancer cells by up-regulation of 
FAK-targeting microRNA-7 in cancer cells.

62

higher metabolic stability, and better intestinal 
absorption to TC than TCT11. In this overview, TCT 
has eight studies on the anti-cancer and 14 studies on 
other pharmacological properties, while TC is reflected 
by seven anti-cancer studies and 31 studies on other 
pharmacological properties. In terms of cytotoxicity 

towards cancer cells, it is apparent that TCT is 
slightly stronger than CT. It appears that the greater 
bioavailability, higher metabolic stability, and better 
intestinal absorption of TC than TCT are applicable 
for other pharmacological but not for anti-cancer 
properties.
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Table 4. Other pharmacological properties of tricetin (TCT) and tricin (TC)

Compound, 
bioactivity

Description of effect Reference

Tricetin

Anti-inflammatory TCT inhibited PARP-1 nuclear enzyme in pulmonary epithelial cells by 80%. It ranked 
second to myricetin which displayed 93% inhibition.

63

TCT displayed anti-inflammatory effects in a mouse model of LPS-induced acute 
pulmonary inflammation. When compared to those of fisetin, its effects were less 
pronounced. 

64

TCT protected chondrocytes against IL-1β-induced inflammation in rats by suppressing the 
MAPK signalling pathway, suggesting its potential use in treating osteoarthritis.

65

TCT protects vascular endothelial cells from vascular inflammation by inhibiting LOX-1, 
ERK1/2, and Egr-1, suggesting its potential use in modulating atherosclerosis.

66

TCT protected acinar cells against AP in mice induced by cerulein. The processes involved 
the suppression of apoptosis and edema formation in the pancreas, and the reduction of 
amylase and lipase levels in the serum.

67

Anti-diabetic TCT displayed stronger α-glucosidase inhibitory activity than acarbose, the anti-diabetic 
drug. TCT with the greatest number of hydroxyl groups had the strongest α-glucosidase, 
α-amylase, and lipase inhibitory activities when compared to other flavones.

24

TCT was able to reverse the poor glucose uptake ability of the hyperglycemic cell model 
using HepG2 cells induced with high glucose. Metformin used as the positive control, had 
the strongest anti-diabetic effect on glucose uptake.

68

PARP inhibitory TCT strongly reduced LPS-induced TNF-α concentration in the blood of COPD patients 
(−31%) and in IL-6 concentration in the blood of T2D patients (−29%). 

69

BCRP/ABCG2 
inhibitory

Using the MVT assay, TCT moderately inhibited BCRP/ABCG2 with an IC50 value of 0.41µM. 70

AChE inhibitory Enzyme inhibition based on the Elman assay showed that TCT strongly inhibited AChE 
with an IC50 value of 18.3 µg/ml. Inhibition was stronger than donepezil (22.0 µg/ml) used 
as the standard.

71

Anti-gastric TCT strongly inhibited H+, K+-ATPase gastric enzyme with an IC50 value of 0.31 µM. 
Inhibition was stronger than myricetin (0.58 µM). Oral administration of TCT (50 mg/kg) 
exerted significant inhibitory effects on gastric acid secretion in mice.

72

Neuroprotective A PD model using Caenorhabditis elegans showed that TCT protected against neurotoxicity 
induced by 6-OHDA via suppression of the mitochondria-dependent apoptosis pathway 
and activation of the Nrf2/HO-1 signalling pathway.

73

Lipid inhibitory Unlike flavonoids such as luteolin, diosmetin, and chrysoeriol which significantly 
decreased lipid accumulation, TCT up-regulated the levels of intracellular lipids. Assays 
were done with an MDI mixture. 

74

Antioxidant Among the flavonoids, TCT was a good antioxidant with negligible pro-oxidant activity, 
unlike myricetin which showed both pro-oxidant and antioxidant effects.

75

Tricin

Anti-viral TC significantly suppressed HCMV replication in MRC-5 HEL cells via inhibition of COX-2 
expression with an EC50 value of 0.51 µM.

34

TC possessed anti-influenza virus properties, ameliorated loss in body weight and 
improved survival rate in mice infected with the influenza A virus. 

35

TC displayed anti-HCMV effects in MRC-5 HEL cells by inhibiting CXCL11 gene expression. 36

TC exerted anti-HCMV activity by attenuating the expression of aCCL2 and by inhibiting 
HCMV virion production.

37

TC displayed anti-HCMV effects in HEL cells by inhibiting CCL5 induction needed for the 
growth of the virus.

76
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Compound, 
bioactivity

Description of effect Reference

TC significantly suppressed HCMV replication in HEL fibroblast cells by inhibiting the 
kinase activity of CDK9.

38

Anti-inflammatory TC exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by reducing LPS-
induced NO, prostaglandin E2, and intracellular ROS production.

77

TC ameliorated LPS-induced inflammation in human PBMC by modulating MAPK and 
PI3K/Akt pathways, down-regulating NF-kB signaling, and deactivating COX-2 and TNF-α.

32

TC exhibited anti-inflammatory effects in LPS-stimulated RAW 264.7 cells via activation of 
AMPK and inhibition of NF-κb.

78

TC suppressed inflammation-related colon carcinogenesis in mice by significantly 
inhibiting TNF-α expression in the colon mucosa.

79

TC (50 µM) exerted anti-inflammatory activity in LPS-activated RAW 264.7 cells by reducing 
NO production and suppressing the NF-κB pathway. 

61

Anti-obesity TC exhibited anti-adipogenic activity by significantly inhibiting TG accumulation in 3T3-L1 
adipocytes without any cytotoxic effects.

28

TC inhibited adipogenesis and lipogenesis by suppressing fat accumulation in 3T3-L1 pre-
adipocytes via down-regulation of Akt/mTOR/S6K and Akt/mTORC1/SREBP-1 pathways.

80,81

TC displayed an anti-obesity effect in obese mice given a high-fat diet by lowering body 
weight and adipogenesis, and by decreasing serum and hepatic TG levels. The mechanism 
involved the AMPK pathway. 

82

COX inhibitory TC inhibited COX enzymes and reduced intestinal carcinogenesis in ApcMin mice. In mice on 
the TC diet, PGE2 levels in the small intestinal mucosa and blood were reduced by 34% and 
40%, respectively.

83

TC inhibited COX enzymes, with IC50 values of 1.0 µM in both HT-29 and HCA-7 colon 
cancer cells, respectively.

84

Anti-tubercular TC inhibited Mycobacterium tuberculosis with MIC and IC50 values of 58.5 and 20.2 µg/ml, 
respectively.

39

Skin photoaging 
inhibitory

TC attenuated UVB-induced wrinkle formation in hairless SKH-1 mice by inhibiting the 
expressions of MMP-1 and MMP-3.

40

Anti-HS cells TC inhibited the proliferation of cells in vitro by blocking tyrosine phosphorylation of the PDGF 
receptor and signalling pathways, suggesting its potential use in treating hepatic fibrosis.

85

Anti-tyrosinase TC inhibited tyrosinase activity with an IC50 value of 0.27 mg/ml in a non-competitive 
manner. TC also quenched tyrosinase fluorescence by forming a complex.

86

Anti-histaminic TC possessed potent anti-histaminic activity against exocytosis from rat leukaemia 
basophils (IC50 value of 4.8 µM). Luteolin and scutellarein ranked second and third with 
weak inhibition (IC50 values of 58 and 67 µM) respectively.

27

Anti-angiogenesis TC efficiently suppressed tumor angiogenesis in vitro by down-regulating both VEGFR2 
signalling and HIF-1α activity. 

87

Anti-diabetic TC significantly increased glucose uptake in C2C12 myotubes of glucose-loaded mice by 
significantly lowering blood glucose levels.

88

Anti-leishmanial TC exhibited potent inhibitory activity against intra-cellular Leishmania infantum 
amastigotes with an IC50 value of 56 µM, suggesting its potential use for treating 
leishmaniasis.

30

Osteoblastogenesis TC enhanced osteoblastogenesis in HMS cells via the regulation of Wnt/β-catenin signalling. 89

AC amelioration TC ameliorated AC in mice induced by DSS. TC improved colonic inflammation and 
modulated harmful microbiota in the gut.

61

Neuroprotective TC attenuated cerebral I/R injury in nerve cells of male rats by inhibiting autophagy, 
apoptosis, and inflammation via regulation of the PI3K/Akt pathway.

90

Table 4. Continued...
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Compound, 
bioactivity

Description of effect Reference

Immuno-regulatory TC suppressed allergic responses in OVA-sensitized mice by reducing the Th2 cytokine 
level and increasing the Th1 cytokine level, suggesting its potential in treating allergy-
related disorders.

41

Pneumonia 
attenuation

TC attenuated the progression of LPS-induced pneumonia by modulating Akt and MAPK 
signalling pathways. Against JNK1, its inhibition was 75.4% and 17.7 µM in IC50 value.

91,92

6. Conclusion

TCT has been reported mainly in honey and pollen 
of Eucalyptus species while TC is dominant in cereal 
crops and bamboo species. Both flavones are equally 
strong in anti-cancer properties but TC has stronger 
other pharmacological properties than TCT. TC 
(5,7,4’-trihydroxy-3’,5’-dimethoxyflavone) is a methylated 
flavone with two OCH3 groups and three OH groups, while 
TCT (5,7,3’,4’,5’-pentahydroxyflavone) is a hydroxylated 
flavone five OH groups and no OCH3 groups. Studies 
on the structure-activity relationship of TCT and TC by 
increasing and decreasing the number of OCH3 groups, 
respectively, would be worthy of further investigation. 
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