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1.  Introduction

Carbonic anhydrases (EC 4.2.1.1) are ubiquitous 
zinc metalloenzymes found in all living species. They 
are encoded by eight distinct genetic groups that are 
evolutionary unrelated, including α, β, η, δ, ζ, η, θ, and ι, 
which are known as CAs1. Protozoa, vertebrates, algae, 
cytoplasm of green plants, and several Gram-negative 
bacteria have α-CAs2. The β-CAs are extensively found 
in numerous fungi, algae, mono- and dicotyledon 
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chloroplasts, and both positive and negative gram 
negative and positive bacteria. Archaea, cyanobacteria, 
and most species of bacteria include γ-Cas3. Click 
or tap here to enter text. On the other hand, marine 
diatoms appear to contain exclusively δ-, ζ-, and θ-CAs, 
whereas protozoa such as Plasmodium falciparum 
contain η-Cas4. Recently, it was found that ι-CAs are 
found in bacteria as well as marine phytoplankton5,6.

The human carbonic anhydrase (hCA) family 
comprises sixteen distinct isoforms falling under the 
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category of α-carbonic anhydrases (α-CAs). These 
isoforms exhibit notable diversity concerning their 
tissue distribution, cellular localization, expression 
levels, and responses to different classes of inhibitors. 
The classification of hCAs encompasses various 
subsets, including membrane-bound isoenzymes such 
as CA IV, CA IX, CA XII, and another CA IV variant. 
Additionally, there are mitochondrial isoforms, 
specifically CA VA and CA VB, as well as secreted 
isoforms exemplified by CA VI, predominantly 
found in saliva. Cytosolic isozymes, namely CA I, 
CA II, CA III, CA VII, and CA XIII, contribute to the 
comprehensive array of hCAs. Remarkably, among 
the sixteen hCA isoforms, only twelve (I–IV, VA, 
VB, VI, VII, IX, XII-XIV) display catalytic activity. 
These enzymatically active isoforms feature active 
sites characterized by the presence of three histidine 
residues in triple coordination with a zinc ion, 
underscoring the pivotal role of zinc in their catalytic 
function. In contrast, the remaining three isoforms, 
namely CA VIII, CA X, and CA XI lack a Zn2+ ion 
and consequently exhibit no catalytic activity. These 
non-catalytic isoforms are designated as CA-related 
proteins (CARPs), emphasizing their distinction from 
their enzymatically active counterparts. Furthermore, 
it is noteworthy that CA-XV is a variant found in 
mice, denoted as mCA XV, adding a layer of species-
specific diversity to the carbonic anhydrase family. 
The nuanced differences in catalytic activity, zinc 
coordination, and cellular localization among these 
isoforms underscore the intricacies of the hCA 
family, highlighting the diverse functional roles 
played by different members in various physiological 
contexts7-11.

Carbonic acid (H2CO3) is produced when a neutral 
CO2 molecule reacts with water12. It spontaneously 
separates into bicarbonate ion and proton. At high pH, 
this reversible reaction occurs spontaneously, whereas, 
at physiological pH, it proceeds slowly [turnover 
number (kcat) of 10-1 s-1]13,14. Carbonic anhydrases 
can catalyze this process because they have evolved 
to withstand the enormous levels of CO2 that most 
organisms produce, which makes their substrates 
readily available to cells. The hydrogen and bicarbonate 
ions that are produced have buffering properties that 
are crucial for pH regulation.

Carbonic anhydrases (CAs) catalyze the following 
reaction:

CO2 + H2O HCO3
- + H+

� (Equation 1)

While the primary function of this class of 
metalloenzymes is to catalyze the reversible hydration 
of CO2 to bicarbonate and proton (all CAs), some 
members of the entire Carbonic anhydrases family 
also catalyze various other hydrolytic processes, such 
as the hydration of COS and CS2 (β CAs) (Equation 2 
and 3), the hydration of cyanamide to urea (Equation 
4), and the hydrolysis of various esters (α CAs) 
(Equation 5)15-18.
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The orchestration of numerous physiological 
processes hinges significantly on the regulatory 
influence exerted by Carbonic Anhydrases (CAs). 
These enzymes play pivotal roles in processes such 
as the intricate exchange of CO2 and bicarbonate 
between the lungs and metabolizing tissues, 
respiratory functions, cellular homeostasis, electrolyte 
secretion across various tissues and organs, gastric 
acid secretion, and the orchestration of biosynthetic 
reactions encompassing gluconeogenesis, lipogenesis, 
ureagenesis, bone resorption, calcification, renal 
acidification, cellular stress adaptation, and 
tumorigenicity, among others19,20.

The far-reaching impact of CAs is underscored 
by their involvement in the pathophysiology of 
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numerous diseases. Conditions such as edema, 
obesity, mental disorders, glaucoma, cancer, and 
certain disorders of the central nervous system, 
including neuropathic pain, idiopathic intracranial 
hypertension, epilepsy, and osteoporosis, are 
intricately linked to the regulatory functions of CAs 
in these processes. The critical roles played by CAs 
in disease-associated pathways have positioned them 
as promising targets for therapeutic interventions. 
The development of selective human Carbonic 
Anhydrase Inhibitors (hCAIs) has emerged as a 
focal point in the quest for effective treatments for 
the aforementioned diseases. These inhibitors aim 
to modulate the activity of CAs, offering a targeted 
approach to mitigating the underlying dysregulation 
contributing to the pathogenesis of these diverse 
medical conditions. The multifaceted involvement 
of CAs in physiological and pathological processes 
emphasizes their significance as potential therapeutic 
targets, highlighting the intricate interplay between 
enzyme function and human health21.

1.1  Isoforms of Α – Carbonic Anhydrases
While novel generation compounds are receiving 
clinical development as anti-obesity and anticancer 
drugs/diagnostic tools, CA Inhibitors (CAIs) were 
first utilized as diuretics22, antiglaucoma medicines23, 
antiepileptics24,25, and in the management of altitude 
sickness26. Conversely, the CA Activators (CAAs) 
possess pharmacological applications in memory 
therapy27, and emotional memory modulation, 
suggesting their potential utility in the treatment 
of disorders such as phobias, obsessive-compulsive 
disorders, post-traumatic stress disorder, and 
generalized anxiety, for which there are currently 
limited treatment alternatives28-30.

CA I and CA II are found in erythrocytes at 
high concentrations, and since CA I is implicated 
in cerebral and retinal edema, inhibiting it may be 
a useful treatment for these disorders31. Among 
human CAs, CA II is the most active isoenzyme and 
is mostly located in the kidney, inner ear, Central 
Nervous System (CNS), and eye. Clinically utilized 
medications such as diuretics, antiglaucoma, and 
anticonvulsants target this enzyme32,33. Because 
of its special capacity to regulate the production 

of peroxisome proliferator-activated receptor-g2 
(PPARg2)34, CA III is expressed in tissues such as 
skeletal muscles and adipose tissues, and it is directly 
associated with adipogenesis. Furthermore, it was 
shown that CAIII was downregulated in several 
illnesses, including systemic lupus erythematosus 
and rheumatoid arthritis that were connected to 
exhaustion and muscular soreness35. A unique 
glycosylphosphatidylinositol anchor holds CA IV, the 
most common membrane-associated CA isoform, 
to the membrane's outer surface. The human body 
has large amounts of CA IV in many different parts, 
such as the kidneys, lungs, colon, pancreatic cell 
plasma membranes, eyes, heart muscle, etc. Possible 
involvement of the mutant version of the CA IV 
isoform in the development of retinitis pigmentosa, 
stroke, and glaucoma has been discovered36,37.

Two Mitochondrial isoforms, CA VA, which 
exist in the liver aid in ureagenesis by supplying 
bicarbonate ions for carbamoyl phosphate and CA 
VB enhances lipogenesis by promoting carboxylase 
activity38. Due to their dual effects on gluconeogenesis 
and lipogenesis, these enzymes can serve as 
valuable therapeutic targets in the management 
of insulin resistance and obesity39. After being 
initially identified in saliva, CA VI has now been 
demonstrated to be expressed in pulmonary airways, 
tears, milk, and nasal secretions, as well as enamel 
organ cells40,41. Inhibition of the CA VI isoform 
results in loss of taste or, rarely, anomalies in taste  
perception42.

The CA VII isoform is expressed in the liver, 
brain, skeletal muscles, and colon. There are two 
versions of CA VII: one has the whole amino 
acid sequence, while the other has an N-terminal 
truncation of 56 residues. Like CA III, CA VII has 
two glutathionylated cysteine residues on its surface 
that protect cells from oxidative damage43. Because it 
reduces neuronal excitation, the inhibition of CA VII 
is considered a promising target for the treatment of 
neuropathic pain and seizures44.

The CA VIII, X, and XI are categorized as carbonic 
anhydrase-related proteins (CA-RPs). They are non-
catalytic isoforms and are mostly located in the 
brain. Their physiological role and functions remain 
unclear as of yet. Ataxia, mild mental retardation, 
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and quadrupedal gait have all been associated with 
the CA 8 gene, suggesting that CA VIII has a role in 
neurodegenerative diseases45. CA XIII is expressed in 
organs including the kidney, thymus, submandibular 
glands, small intestine, and reproductive organs. 
According to several theories, CA XIII is essential for 
controlling the pH of reproductive activities, such as 
sperm motility.CA XIV is one of the transmembrane 
isoforms and is expressed in the bladder, kidney, colon, 
small intestine, brain, and other organs. It shares 
a considerable amount of sequence similarity with  
CA XII.

CA IX and XII are well-known targets for 
anticancer drug and their expression in normal 
conditions is limited to epithelium lining the 
gastrointestinal tract. The over-expression of these 
enzymes primarily aids in the growth, metastasis, 
angiogenesis, and proliferation of tumors46. The 
hypoxic tumor condition, in which the tumor mass's 
vasculature system is unable to keep up with the 
oxygen demand of rapidly proliferating cancer cells, 
results in areas with insufficient oxygen supply. This 
leads to a decrease in ATP production due to reduced 
oxidative phosphorylation of glucose47. Tumor cell 
survival, proliferation, and gene expression undergo 
significant alterations as a result of this hypoxic 
state. The ability of proliferating cancer cells to meet 
their energy needs through an alternate glycolytic 
route is contingent upon the metabolic shift brought 
on by hypoxia. However, this change also results 
in a rise in lactic acid production as a metabolic 
byproduct, acidifying the extracellular environment  
acidic48,49.

The ability of cancer cells to adapt to the pH 
shift in their microenvironment caused by the 
buildup of CO2 and lactic acid is crucial to their 
survival. So, the overexpression of CA IX genes is 
the most notable adaptation under these hypoxic 
conditions. In hypoxic tumors, overexpression of 
hCA IX lowers the extracellular matrix's pH, which 
promotes cancer cells'  survival and advancement50. 
As a result of strong transcriptional activation 
produced by Hypoxia Inducible Factor-151, it is 
now well established that CA IX is overexpressed 
in a variety of tumor types, including brain, breast, 
kidney, and colorectal cancers52. Expression of CA IX 

in non-cancerous tissues is uncommon and typically 
limited to the intestine, pancreas, stomach, and 
gallbladder epithelia53,54. It has also been discovered 
that tumor hypoxia makes cancer cells more resistant 
to weakly alkaline anticancer medications. Therefore, 
in the last ten years, researchers have focused a lot 
of attention on CA IX in an effort to create novel 
anticancer drugs55.

The fact that hypoxia also controls the second 
tumor-associated isozyme, CA XII, is most likely not 
a coincidence. CA XII performs vital roles in normal 
physiological conditions and is found in numerous 
normal tissues and organs, including the endometrium, 
prostate, colon, kidney, and eye. The expression of this 
gene has been found in a variety of tumor types, such 
as renal cell, breast, ovarian, pancreatic colorectal, 
and gastrointestinal carcinoma56. These tumor forms 
are typically linked with less aggressive and well-
differentiated phenotypes.

Many malignancies eventually acquire drug 
resistance after initially responding to chemotherapy; 
at this point, treatment is no longer effective, and 
the disease returns and worsens. When compared to 
drug-sensitive cancer cells, the subgroup of cancer 
cells that resist medication therapy exhibits inherent 
morphological differences. The upregulation of drug 
efflux transporters, such as P-glycoprotein (Pgp), 
often referred to as multidrug resistance protein 1, is 
one of the main and prevalent mechanisms underlying 
drug resistance. If a cancer starts from a cell type that 
has high basal Pgp expression, then overexpression 
of Pgp in malignancies may develop intrinsically. 
After it was found that the CA XII, which counteracts 
extracellular acidosis in hypoxic tumors, indirectly 
lowers Pgp activity in resistant cancer cells, a novel 
idea of using CA XII inhibition to target the pH 
microenvironment to overcome Pgp-mediated drug 
resistance, emerged. A novel approach to specifically 
target Pgp in cancer cells exclusively is made possible 
by the close correlation between the co-expression of 
CA XII and Pgp and a drug-resistant phenotype57,58. 
Notably, this relationship does not exist in healthy 
cells.

As a result, hCA XII is another excellent biomarker 
for the suppression of different hypoxic tumors in both 
the initial and metastatic stages (Table 1).
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of a metal ion nestled within the confines of the active 
site cavity. Intriguingly, the apoenzymes, devoid of 
this essential metal cofactor, remain catalytically inert. 
Within the diverse spectrum of CAs, the α-, β-, and 
δ-CAs feature active sites adorned with Zn(II) ions, 
essential for their optimal functionality. The γ-CAs, on 
the other hand, display versatility by accommodating 
either Zn(II) or Co(II) ions, although they are often 
speculated to primarily associate with Fe(II) ions. 
Remarkably, the metal ion in ζ-CAs is typically replaced 
by cadmium, highlighting the intricate variations in 
metal coordination among different CA isoforms61,62.

One captivating facet is the revelation that certain 
isoforms of carbonic anhydrases, known as ι-CAs, 
showcase catalytic activity even in the absence 
of a metal ion cofactor, defying the conventional 
paradigm63. The structural intricacies of the active 
sites provide further insight into the diversity of metal 
coordination. In α-, γ-, and δ-CAs, the Zn metal ions 
intricately coordinate with three histidine amino 
acid residues (His94, His96, and His119), along 
with a water molecule or hydroxide ion, forming the 
catalytic core. This coordination occurs at the base of 
a 15Å deep active-site cleft, emphasizing the precision 
required for their enzymatic function25,64.

Conversely, β- and ζ-CAs exhibit distinct amino acid 
ligands within their active sites, featuring one histidine 
and two cysteine residues for metal coordination65. 
Intriguingly, in silico studies shed light on the 
coordination sphere of η-CAs, suggesting a unique 
arrangement with two histidine residues and one 
glutamine residue participating in the coordination of 
the presumed Zn(II) ion, alongside the requisite water 
molecule or hydroxide ion. This diversity in metal 
coordination among various CA isoforms underscores 
the intricate interplay between structural nuances and 
catalytic function, contributing to the versatile roles 
these enzymes play in physiological processes. The 
reverse hydration of CO2  by CAs follows a two-step 
catalytic mechanism:

E M2+ OH- E M2+ HCO3
- E M2+ H2O + HCO3

-

� (Equation 6)

E M2+ H2O+B B H+ + E M2+ OH-

� (Equation 7)

Table 1.  CO2 hydration catalytic activity and off-targets 
of hCA in various diseases59

hCA 
isoforms

CO2 
hydration 
Catalytic 
activity

Diseases in 
which involved

Possible 
off-targets

hCA I Low Cerebral/ retinal 
edema
Hemolytic anemia

-

hCA II High Glaucoma
Edema
Epilepsy

hCA I

hCA III Very Low Oxidative stress
Muscular soreness

-

hCA IV Medium Glaucoma
Stroke
Retinitis 
pigmentosa

hCA I

hCA VA Low Obesity and hCA I and 
hCA II

hCA VB High Insulin resistance

hCA VI Low Cariogenesis hCA II

hCA VII Low Epilepsy -

hCA VIII No activity Neurodegenerative 
diseases

-

hCA IX High Cancer hCA I and 
hCA II

hCA X No activity - -

hCA XI No activity - -

hCA XII Low Cancer hCA I and 
hCA II

hCA XIII Low Sterility -

hCA XIV Low Retinopathy -

2. � Carbonic Anhydrase Catalytic 
Mechanism

The earliest evidence of CAs was found in 1933 when 
it was found that erythrocytes had stoichiometric zinc 
levels and an abundant protein known as carbonic 
anhydrase, which was later shown to be necessary for 
the enzymatic activity of CO2 hydration60.

Metalloenzymes, a fascinating class of proteins, 
exhibit catalytic efficiency contingent upon the presence 
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The catalytically active species that powers the 
catalytic activity is the metal hydroxide species of the 
enzyme (E-M2+-OH). There is a designated pocket for 
CO2 in the active site of CA. This active species shows 
strong nucleophilicity (at neutral pH) towards the CO2 
molecule trapped in a nearby hydrophobic pocket 
during the initial phase of the reaction. This results 
in the production of HCO3

-, which a water molecule 
then removes from the active site (Equation 6). The 
regeneration of the metal hydroxide species through 
a proton transfer reaction from the M2+ bound water 
to either an external proton acceptor (B in Equation 
7) or an active site residue27 is the second stage in the 
catalysis process, and it is the step that limits the pace. 
Several of the α- and ζ-CAs are among the most potent 
natural catalysts because of their catalytic turnover 
kcat/KM values, which are above 108 M-1 x s-1. The Cl/
HCO3

-exchanger and the Na/HCO3- exchanger, among 
many others, are two examples of transporters or 
gateway channels in which the displaced HCO3- ion is 
involved. These channels have different roles in various 
physiological processes.

The active sites of all families of CAs have a unique 
architecture that allows for their partition into two 
very distinct environments: one-half of the active site 
is lined by hydrophilic residues, while the other is 
bordered by hydrophobic residues. This architecture 
is what allows for such efficient catalysis. A plausible 
theory states that the hydrophobic component 
functions by capturing the lipophilic CO2 molecule, 
while the hydrophilic component is responsible for 
the escape of the polar species generated by the CO2 
hydration reaction into the environment. The latter 
procedure, which helps the protons reach the cavity's 
exterior with the help of a network of water molecules 
and Histidine residues, has at least been demonstrated 
for the protons.

2.1 � New Inhibition Mechanisms and New 
CAI Classes

Before our studies in the field of CA, the only inhibitors 
known to exist were metal-complexing anions and 
sulfonamides, some of which are currently being used 
in clinical settings. Sulfonamides are still a highly 
significant family of CAIs with numerous established 
drugs, as was previously indicated; nonetheless, these 
two ZBGs are isosteres of the sulfonamide moiety. The 

sulfamate topiramate was initially deemed not to act as 
a CAI by those who discovered it in 1987.

Christianson's group used X-ray crystallography in 
1994 to show that phenol binds in a very different way 
than sulfonamides: it anchors using the OH moiety to 
the zinc-coordinated water molecule. When Lindskog's 
group reported in 1982 that phenol functioned as 
a CAI, it was considered a kind of curiosity. The 
discovery of novel chemotypes acting as CAIs, such as 
coumarins, polyamines, dithiocarbamates, xanthates 
and monothiocarbamates, hydroxamates, selenols, etc., 
witnessed a "revival" in 2008.

His 94 

His 96

His 119 SCAFFOLD
Zn2+

ZBG

Hydrophilic
part of active site

Hydrophobic
part of active site

Tail

Figure 1.  Schematic representation of the general 
structure of zinc-binding CAI in the CA active site.

The intriguing aspect is that these several 
chemotypes attach in four different ways, each of which 
has a unique inhibitory mechanism61,62,66.

2.1.1  Zinc Binding Inhibitors
A general method of CA suppression by Zinc binders, 
like sulfonamides, sulfamides, and sulfamates requires 
the direct interaction of the Zinc Binding Group (ZBG) 
with the zinc metal ion (Figure 1). These inhibitors 
after deprotonation bind as anions to the metal ion, 
which is in tetrahedral geometry with the ZBG. In 
addition, two conserved residues in all α -CAs engage 
with the ZBG, serving as "gatekeepers." These residues 
are Thr199, which is involved in a hydrogen bonding 
with the zinc in the uninhibited enzyme via its OH 
group, and Glu106, which forms a hydrogen bonding 
with Thr199 in the enzyme-inhibitor adducts by its 
carboxylate group67,68.

2.1.2  Inhibitors Anchoring to the Zinc Coordinated 
Water Molecule

Compounds employing this specific mechanism to 
inhibit Carbonic Anhydrases (CAs) stand out due 
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to the incorporation of an Anchoring Group (AG) 
linked to a scaffold, potentially featuring appended 
tails capable of engaging with both sides of the active 
site, akin to the binding characteristics observed in 
zinc binders. The uniqueness of this inhibition lies 
in the strategic combination of the anchoring group 
with a scaffold, forming a molecular structure that 
facilitates effective interaction with the target enzyme. 
The potential inclusion of tails further enhances the 
versatility of these compounds, allowing them to 
establish interactions not only with the active site itself 
but also with adjacent regions, thereby optimizing 
their inhibitory efficacy. This nuanced approach 
highlights the intricate design principles employed 
in developing inhibitors that operate through this 
distinctive mechanism, emphasizing the significance 
of the anchoring group and its synergy with the 
scaffold for targeted and efficient CA inhibition. 
When compared to the zinc binders, these inhibitors 
do not make direct contact with the metal ion. With 
the anchoring group, these CAIs can establish two 
hydrogen bonds, one between the inhibitor's hydrogen 
atom with the metal ion-coordinated water molecule/
hydroxide ion, and the other hydrogen bond involves 
the participation of NH of Thr 199 with the inhibitor. 
This mechanism of inhibition was first found for 
phenol and has since been found for polyamines, 
thioxocoumarins, catechols, sulfocoumarins (which 
bind as sulfonates when hydrolyzed), and polyamines 
(using X-ray crystallography and other biophysical 
measures). Consequently, OH, NH2, or SO3H moieties 
are frequently found in AG69-71.

2.1.3 � Inhibitors that Occlude the Entrance of the 
Active Site

In contrast to Zinc binders or compounds that 
attach to the zinc-coordinated water molecule, these 
inhibitors establish binding at a considerable distance 
from the metal ion, avoiding any direct interaction 
with it. Their inhibitory action involves obstructing 
the entrance of the active site cavity, a region 
characterized by high variability among various 
isoforms, while also maintaining relative homology 
with the 16 mammalian counterparts. The molecules 
that work via this inhibitory mechanism are attached 
to a scaffold by an aromatic, heterocyclic, or aliphatic 
Sticky Group (SG). Because these compounds attach 

in a somewhat exterior region of the cavity, they may 
also have a tail that extends out from the active site. 
The natural substance coumarin was the first instance 
of such an inhibitor that was identified. However, 
further investigation demonstrated that all coumarins 
and structurally similar mono- and bicyclic 5 and 
6-membered lactones possess this type of action. It 
triggers the lactone ring to hydrolyze, resulting in the 
formation of hydroxy-acids for 5- and 6-membered 
lactones and hydroxy-cinnamic acids for coumarins. 
Coumarins and their derivatives serve as suicide (or 
prodrug) inhibitors, which sets them apart from other 
groups of CAIs due to their binding location near the 
opening of the active site cleft72,73. It is explained by 
the fact that they bind amongst the different isoforms 
in the changeable portion of the active site, which is 
why they produced highly isoform-specific CAIs.

2.1.4 � Inhibitors Binding out of Active Site
The inhibitors in question exhibit a unique binding 
pattern, occupying an adjacent pocket near the 
entrance, distinct from the active site cavity itself. This 
unconventional binding behavior, highlighted through 
crystallography and kinetic studies involving a benzoic 
acid derivative featuring an ortho-benzyl sulfoxide 
moiety, is particularly evident in the hydrogen bonding 
interactions with His64, a crucial proton shuttle residue 
in α-carbonic anhydrases (α-CAs). The catalytic 
cycle disruption ensues as a consequence of this 
binding, marking a departure from the conventional 
inhibitory mechanisms observed with other inhibitors. 
To date, only 2-benzoyl sulfonyl-benzoic acid has 
been identified as functioning through this atypical 
inhibitory pathway. When 2-(benzylsulfonyl)-benzoic 
acid was subjected to co-crystallization with hCA 
II, the inhibitor's electronic density manifested in a 
binding pocket adjacent to the active site, positioned 
at a considerable distance. This interference occurs 
precisely at the step crucial for determining the rate of 
the entire catalytic cycle – the proton transfer from the 
zinc-coordinated water molecule to the environment 
and the subsequent regeneration of the enzyme-zinc 
hydroxide complex. A pivotal aspect of this inhibitory 
mechanism involves the flexibility of the amino acid 
His64, which exists in two primary conformations: 
an "in" conformation, closer to the metal ion, and an 
"out" conformation, directed towards the exit of the 
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active site cavity. In its "in" conformation, the imidazole 
moiety of His64 becomes protonated by extracting a 
proton from the zinc-coordinated water, while in the  
"out" conformation, the same proton may be released 
into the environment. The inhibitors disrupt this 
critical process, impeding the enzyme's function by 
preventing the proton shuttle from traversing a network 
of hydrogen bonds. Consequently, the complete 
catalytic cycle is hindered, underscoring the distinctive 
inhibitory mechanism employed by these inhibitors74.

For decades, several sulfonamides, as well as their 
bioisosteres, sulfamides, and sulfamates, have been 
purportedly used as diuretics and to cure glaucoma 
and epilepsy. Of all the chemicals in this class, carbonic 
anhydrase inhibitors (CAIs) are the ones that are 
being studied the most. Acetazolamide (AAZ) and 
dorzolamide, for instance, are categorized as first- and 
second-generation medicines used as CAIs and are 
primary sulfonamides (Figure 2). These drugs usually 
have significant CA activity, but their selectivity for 
a specific isoform of an enzyme linked to disease is 
usually insufficient, and their off-target inhibition 
causes important adverse effects. In actuality, the 
field of CA inhibition has a recurring issue with the 
discovery of isoform-specific inhibitors75,76.

The catalytic binding region across all 16 α-Carbonic 
Anhydrase (CA) isoforms manifests impressive 
structural conservation, posing a formidable challenge 
in the development of isoform-specific inhibitors. 
Despite this structural uniformity, comparative analyses 
have unearthed the existence of a specialized pocket 
near the zinc ion, situated at the periphery of the binding 
site, which exhibits selectivity towards α-CAs. Crafting 
an effective Carbonic Anhydrase Inhibitor (CAI) 
necessitates the incorporation of three indispensable 
structural components: a hydrophobic moiety, a Zinc-
Binding Group (ZBG), and a "tail". Critical residues 
Thr199 and Glu106, conserved within the active sites 
of all α-CAs, along with the catalytic zinc ion, play 
pivotal roles in binding with the ZBG group. The 
hydrophobic moiety, crucial for the inhibitory action, 
features a tail intricately linked to an organic scaffold, 
often characterized by an aromatic or heteroaromatic 
ring. The unique structural arrangement allows the 
tail to interact directly with either the hydrophobic or 
hydrophilic half of the binding site, providing versatility 
in targeting both polar and lipophilic groups. This 
strategic design consideration underscores the intricate 
balance required for successful CAI development, 
navigating the complex structural landscape of 

Figure 2.  Molecular structures of A) First and B) Second generation CAIs. 
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α-carbonic anhydrases while leveraging the selective 
pocket near the zinc ion for isoform specificity77.

The development of Carbonic Anhydrase Inhibitors 
(CAIs) commonly employs the benzene sulfonamide 
scaffold78, a prominent Zinc Binding Group (ZBG) 
crucial for forming coordinating bonds with the zinc 
central metal atom of Carbonic Anhydrase (CA), 
thereby inhibiting the enzyme. A notable example is 
4-(4-fluorophenylureido) benzene sulfonamide, denoted 
as SLC-0111, currently undergoing phase II clinical 
trials for treating solid hypoxic metastatic tumors, 
demonstrating its potency as a CA IX inhibitor79,80.

Traditionally, the majority of pharmacologically 
effective CAIs, whether in clinical use or under 
development, have been synthetic derivatives resulting 
from conventional drug design methods applied to 
synthetic lead compounds. However, a paradigm 
shift has occurred in the last decade, with increased 
attention directed towards Natural Products (NPs) 
as potential CA inhibitors81. This exploration of NPs 
has significantly advanced the field, providing an 
alternative avenue for the discovery of new chemotypes 
with biological activity and serving as a source of novel 
lead compounds82. The appeal of natural products 
lies in their chemical diversity, efficacy, specificity of 
binding, and proclivity for interactions with biological 
targets, rendering them attractive options for molecular 
probes in the hands of researchers. This evolving trend 
underscores the potential synergy between traditional 
drug design and the exploration of natural products, 
paving the way for innovative approaches in the 
development of carbonic anhydrase inhibitors.

A small number of naturally occurring substances 
are known to include either a primary sulfamate or 
primary sulfonamide group.  Mujumdar and Poulsen83 
reported on the identification, isolation, bioactivity, 
and synthesis of five NP primary sulfamate compounds, 
including nucleotide, 5'-O-sulfamoyl adenosine, 
5'-O-sulfamoyl 2-chloroadenosine, 5'-O-sulfamoyl 
2-bromoadenosine, and 5'-O-sulfamoyl tubercidin, as 
well as two natural products primary sulfonamides, 
psammaplin C (1), and Altemicidin (2).

3.  Psammaplin C

In 1991, the discovery of Psammaplin C marked a 
significant advancement in the field of natural products. 

Isolated from the sponge Pseudoceratina purpurea, 
this primary sulfonamide natural product exhibited 
a unique structural composition. Psammaplin C 
features a bromotyrosine functionalized moiety, with 
an amide linking the bromophenol fragment to an 
ethylene sulfonamide group, thereby incorporating 
the primary sulfonamide group. The confirmation of 
its structure was achieved through a comprehensive 
spectroscopic investigation, revealing a distinctive 
Zinc-binding sulfonamide functional group absent 
in other psammaplin family members84. The research 
conducted by Mujumdar and Supuran's group85 
delved into the Carbonic Anhydrase (CA) inhibition 
properties of Psammaplin C across a panel of 10 hCA 
isoforms. The binding pose within the hCA active site 
was meticulously evaluated, uncovering remarkable 
findings. 

Psammaplin C exhibited exceptional inhibition 
for CA XII, with a Ki value of 0.79 nM. Notably, 
its inhibition constants (Ki) spanned five orders of 
magnitude (0.79 nM – 10630 nM) across various CA 
isoforms, showcasing significant variability compared 
to the more closely clustered CA inhibition of AZA 
(Ki range 2.5 – 250 nM). The sulfonamide proved 
to be less effective against hCA VI and XIII, the two 
isoforms displaying lower sensitivity to this inhibitory 
compound (Figure 3).

Moreover, the research extended to the modification 
of the hCA II protein to mimic the active regions of hCA 
IX and hCA XII. The X-ray crystal structure analysis 
provided insights into the diverse interactions of 
compound (1) bound to the active site. Consistent with 
previous CA-sulfonamide adducts, the deprotonated 
sulfonamide moiety of Psammaplin C bound with the 
zinc ion and formed interactions with 'gatekeepers' Thr 
199 and Glu 10685.

Beyond its inhibitory effects, Psammaplin C 
exhibited no toxicity and demonstrated efficacy 
only in combination with chemotherapy. To explore 
its potential further, a series of 45 Psammaplin C 
derivatives were synthesized, reported in a subsequent 
study86. This initiative aimed to establish Structure-
Activity Relationships (SARs) around compound 1, 
focusing on its action against aggressive glioblastoma 
xenografts with an unconventional mechanism of 
action capable of reversing multidrug resistance. All the 
synthesized derivatives retained the crucial feature of an 
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unhindered primary sulfonamide group, a prerequisite 
for effective CA inhibition. Structural modifications, 
including changes in the 3-bromo, 4-hydroxy benzyl 
moiety, the oxime group, and the ethylene-sulfonamide 
group, resulted in highly effective CAIs for hCA I, II, 
IX, and XII isoforms.

Noteworthy among the derivatives were 
Compounds 55 and 65, derivatives of acetazolamide-
type Psammaplin C with a thiadiazoyl sulfonamide 
moiety in place of the ethylene sulphonamide group 
(Figure 4). These compounds exhibited potent 
inhibition of hCA IX in low-nanomolar concentrations 
and hCA XII in sub-nanomolar concentrations. 
Further studies, both in vitro and in vivo using samples 
from glioblastoma patients, demonstrated enhanced 
activity when combined with the clinically used agent 
temozolomide. This comprehensive investigation 

exemplifies how marine nanoparticles, exemplified by 
Psammaplin C, can pave the way for the development 
of novel compounds with potent anticancer activity.

4. Altemicidin

N

H2N O

H

H

OH
NH

HO O O
S NH2

O O

Figure 5.  Chemical structure of Altemicidin.

Alkaloids are a class of basic, naturally occurring 
organic compounds that contain at least one nitrogen 
atom. In 1989, the discovery of Altemicidin (2) (Figure 
5) marked a significant milestone in natural product 
research. This unique sulfonamide compound was 
isolated from a Japanese sea mud sample originating 
from the actinomycete strain Streptomyces sioyaensis 
SA-1758. Despite its identification more than three 
decades ago, Altemicidin remains the sole primary 
sulfonamide natural product. Notably, its isolation from 
a marine source added to its novelty, setting it apart from 
other compounds of its kind. Altemicidin (2) displayed 
antitumor properties, yet its administration in mice 

hCA I     - 48.1                  hCA  VII    - 1.7        
hCA II    - 88.0                  hCA  IX     - 12.3
hCA IV   - 75.3                  hCA  XII    - 0.79
hCA VA - 154                   hCA XIII    - 10630
hCA VI  - 9680                  hCA XIV   - 379

               

hCA I     - 250                 hCA  VII    - 2.5      
hCA II    - 12                   hCA  IX     - 25.0
hCA IV   - 74.2                hCA  XII    - 5.7
hCA VA - 63.1                hCA XIII    - 16.4
hCA VI  - 11.0                 hCA XIV   - 41.3

Figure 3.  CA inhibition profile of Compound (1) and standard reference CAI Acetazolamide.    

Figure 4.  CAIs for Compounds 55 and 65.
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revealed a noteworthy drawback—acute toxicity87. 
The compound boasts a distinctive chemical structure, 
characterized by the presence of a carboxamide-
sulfamoyl group connected to a bicyclic heterocyclic 
ring system. This unique configuration suggests a 
potential for strong CA inhibitory effects, a hypothesis 
supported by the compound's notable growth 
inhibition of two tumor cell lines: IMC carcinoma and 
murine L1210 lymphoid leukemia. The values for these 
inhibitory concentrations were measured at 2.12 μM 
and 0.8 μg/mL, respectively83. Despite its promising 
medicinal potential, the exploration of Altemicidin's 
CA inhibitory effects remains limited. The primary 
hindrance to further investigation lies in the 
compound's complex synthesis process, which involves 
27 steps. Additionally, the compound's rarity and the 
challenges associated with sourcing chemical reagents 
contribute to its limited accessibility among researchers 
and suppliers88. The realm of marine-derived alkaloids 
has witnessed numerous discoveries from plants 
and animals, showcasing a diverse array of biological 
activities, including potent cytotoxicity. However, 
the occurrence of cytotoxic alkaloids produced 
by actinomycetes is an uncommon phenomenon. 
Altemicidin stands out as a pioneering example, being 
the first reported alkaloid of marine origin derived 
from an actinomycete with cytotoxic properties89. This 
groundbreaking revelation adds a new dimension to our 
understanding of the potential bioactive compounds 
originating from marine environments.

5.  Coumarins

Coumarins are oxygenated heterocyclic polyphenolic 
compounds widely distributed in plant families and 
essential oils, and also present in smaller amounts in 
microbes and animal sources, and have been employed 
for several purposes. Coumarins can be classified into 
the following types based on the core benzopyrone 
ring as: a) simple coumarins, b) Coumarinolignans, c) 

pyranocoumarins, d) bis- and tris-coumarins, and e) 
Furanocoumarins (Figure 6).

Given that coumarins do not contain any zinc-
binding scaffolds as other known CAIs, it seemed highly 
relevant to interpret the mechanism of CA inhibition 
of this new derivative and investigate its inhibition 
profile concerning the mammalian catalytically active 
isoforms90. Based on comprehensive kinetic, mass 
spectrometric, and crystallographic investigations, 
Maresca et al., established that coumarins do 
have a distinct CA inhibitory mechanism. X-ray 
crystallographic investigations using hCA II, a simple 
coumarin derivative (3), and a coumarin derivative 
obtained from the Australian plant Leionema ellipticum 
support the fact that coumarins, unlike other CAIs, 
serve as suicide inhibitors (4)91. These observations 
allowed scientists to conclude that 2-hydroxy cinnamic 
acids (5) and (6) are formed when the coumarin ring is 
hydrolyzed by CA esterase activity. The esterase activity 
of human carbonic anhydrases (hCAs), as elucidated 
by Supuran's groups92, has been demonstrated 
to catalyze the hydrolysis of the lactone ring in 
coumarins. Subsequently, the hydrolyzed products 
exhibit binding in the vicinity of the active site cavity 
opening, situated approximately 8-10 Å away from the 
zinc ion. Remarkably, within the diverse landscape of 
15 distinct human CA isoforms, this region stands out 
for possessing the most varied amino acid sequence11, 
Compounds capable of interacting with and binding 
to the amino acid residues in this specific area of the 
active site, in contrast to those binding deeper within 
the active site where a substantial fraction of amino 
acid residues is shared among multiple CA isoforms, 
often demonstrate heightened isoform selectivity. This 
strategic insight into the differential binding preferences 
within the active site sheds light on a potential avenue 
for achieving enhanced selectivity in the design of 
carbonic anhydrase inhibitors.

From the plant Magydaris pastinacea, fifteen 
coumarins were isolated and reported by Fois et al93. 

Figure 6.  Naturally occurring coumarin types. 
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These coumarins showed strong inhibition towards the 
tumor-related isoforms hCA IX and XII (Ki > 10,000 
nM), but their activity against the cytosolic isoforms 
hCA I and II was found to be relatively low, which is 
a good thing because it is believed that these isoforms 
are what cause the side effects of CAIs. A tricyclic ring 
structure that complements the furan heterocycle is 
present in some of these compounds (7-21), which are 
variably substituted furocoumarins (psoralens) and 
are found in numerous other plants. Polyprenylated, 
Isoprenyl-, or hydrated isoprenyl moieties are included 
in the remaining derivatives, which are likewise 
common for many NPs. Remarkably, all coumarins/
furocoumarins (7-21) displayed an excellent, and 
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substantial inhibitory action towards the tumor-related 
isoforms hCA IX and XII at nanomolar concentration, 
however, they were inactive as hCA I and II inhibitors 
(Figure 7).

Melis et al.,68 synthesized and reported a library of 
psoralen derivatives including carboxylic acid or ester 
moieties and their benzene sulfonamide derivatives 
and examined their activities against hCA I, II, IX, 
and XII isoforms. Because of the photochemical 
characteristics of the psoralen ring system, this class 
of compounds has garnered ongoing research for its 
possible use as antifungal agents or photo-activatable 
anticancer medications. The Magydaris pastinacea 
derivatives that were studied for their coumarins 

Figure 7.  Inhibition profile of Natural Product Coumarin 7-21 against hCA I, II, IX, and XII. 
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Figure 7.  Continued.

Table 2.  Inhibition profile Ki(nM)against hCA I,II,IX, and XII of compounds 22-25, 26-29, and 30-33

Ki (nM)

Compound hCA I hCA II hCA IX hCA  XII

O O O O

O
CH3

Cl

O

22 

>10,000 >10,000 23.6 446.6

O O O O

O
CH3

H3C

O

23

>10,000 >10,000 122.8 56.6

O O O O

O
CH3

H

O

24

>10,000 >10,000 89.7 72.5

O O O O

O
CH3

F

O

25

>10,000 >10,000 84.7 250.0

O O O
OH

CH3

O

Cl

26

>10,000 >10,000 94.7 9.3
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Ki (nM)

Compound hCA I hCA II hCA IX hCA  XII

O O O
OH

CH3

O

H3C

27

>10,000 >10,000 23.0 9.1

O O O
OH

CH3

O

H

28

>10,000 >10,000 17.5 9.4

O O O
OH

CH3

O

F

29

>10,000 >10,000 17.7 7.4

O O O
NH

CH3

O

Cl

S OO
NH2

30

6829.7 55.1 17.8 2.4

O O O
NH

CH3

O

H3C

S OO
NH2

31

7069.0 560.0 91.6 3.4

O O O
NH

CH3

O

H

S OO
NH2

32

7016.1 46.6 16.5 3.6

O O O
NH

CH3

O

F

S OO
NH2

33

7148.1 79.5 108.4 49.9

Table 2.  Continued
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and psoralens  exhibited weak inhibition against the 
ubiquitous hCA I and II isoforms. However, they 
effectively inhibited tumor-associated, hCA IX and 
XII isoforms at low nanomolar concentrations, which 
makes them relevant for anticancer research. These 
findings suggested that both psoralen and hybrid 
compounds may potentially make good scaffolds for 
the development of hCAs IX and XII isoforms selective 
inhibitors. But the derivatives of coumarin (22-25) and 
psoralen (26-29) consistently showed extremely high 
selectivity, the hybrid compounds (30-33) than the 
hybrid compounds. The details of structure and activity 
data are presented in Table 2. Presumably, this is due 
to the existence of the Zinc binding group – benzene 
sulfonamide, which can produce exceedingly potent 
molecules but influence selectivity94-96.

6.  Conclusion

In conclusion, the intricate role of Carbonic Anhydrase 
(CA) in various biological functions has spurred 
extensive research, particularly due to its significance 
in cancer cells. The enzyme, with its eight genetic 
families, catalyzes the reversible hydration of CO2 to 
bicarbonate and protons, influencing pH regulation 
crucial for tumor survival and metastasis. Notably, 
CA IX and XII, among the sixteen isozymes, emerge 
as key players overexpressed in tumor cells. The quest 
for selective inhibition of these enzymes has led to 
the exploration of sulfonamides and their derivatives, 
historically employed in treating conditions like 
glaucoma and epilepsy. The evolving landscape in CA 
inhibitor research has witnessed a noteworthy shift 
toward natural products, complementing synthetic 
derivatives. Psammaplin C and Altemicidin, featuring 
primary sulfonamide or sulfamate groups, exemplify 
this trend. The chemical diversity, binding specificity, 
and interaction tendencies of these natural product 
derivatives make them intriguing candidates for 
molecular probes in research. This paradigm shift from 
traditional drug design methods to a focus on natural 
products highlights the potential for novel therapeutic 
applications. As investigations progress, these natural 
compounds may pave the way for innovative and 
effective strategies in cancer treatment, showcasing 
the dynamic and promising future of CA inhibition 
research.
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