Differential Property of Cationic and Anionic Calcium Ion Cross-linked Pectin Gels

Jump To References Section

Authors

  • School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 ,IN
  • Inter University Accelerator Centre (IUAC), New Delhi 110067 ,IN
  • Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 ,IN
  • Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 ,IN

DOI:

https://doi.org/10.18311/jsst/2015/1700

Keywords:

Ca2 -pectin Gels, Egg-box Model, Gel Elastic Behaviour, Gel Stiffness, Gel Structure Development, Pectin, Rheology of Gels
Hydrochemistry

Abstract

Pectin is a branched polysaccharides found in the cell wall of the plants and commonly used in food industry as a gelling agent, emulsifier or stabilizer. The effect of calcium chloride on the gelation of pectin dispersions was studied using rheology and light scattering measurements. Addition of calcium induced the gel formation in pectin dispersions follows egg-box crosslink mechanism. Zeta potential measurements revealed the formation of cationic and anionic pectin gels on concentration of calcium. The cationic gels had higher rigidity compared to anionic gels. The sol-gel transition has been investigated for pectin-calcium system from the structure factor data which indicated cationic gels undergo transition earlier compared to anionic ones. The gelation time was determined from rheology and viscosity experiments and found to be less for cationic gels.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-06-16

How to Cite

Joshi, N., Rawat, K., Solanki, P. R., & Bohidar, H. B. (2015). Differential Property of Cationic and Anionic Calcium Ion Cross-linked Pectin Gels. Journal of Surface Science and Technology, 31(1-2), 31–36. https://doi.org/10.18311/jsst/2015/1700

Issue

Section

Articles

 

References

A. S. Zerda and A. J. Lesser, J. Polym. Sci part B: Polymer physics, 39, 1137 (2001).

B. R. Thakur, R. K. Singh and A. K. Handa, Critical Reviews in Food Science and Nutrition, 37, 47 (1997).

C. Garnier, M. V. Axelos and J. Thibault, Carbohydr. Res.,240, 219 (1993).

M. Ousalem, J. P. Busnel and T. Nicolai, Int. J. Biol.Macromol., 15, 209 (1993).

M. D. Walkinshaw and S. Arnott, J. Mol. Biol., 153, 1077 (1981).

D. A. Powell, E. R. Morris, M. J. Gidley and D. A. Rees,J. Mol.Biol.,155, 517 (1982).

C. Lofgren, S. Guillotin, H. Evenbratt, H. Schols and A. M.Hermansson, Biomacromolecules 6, 646 (2005).

D. A. Powell, E. R. Morris, M. J. Gidey and D. A. Rees,J. Mol. Biol., 155, 517 (1982).

E. R. Morris, D. A. Powell, M. J. Gidley, D. A. Rees, J. Mol.Biol., 155, 507 (1982).

M. Ashford, J. Fell, D. Attwood, H. Sharma and P. Woodhead, J. controlled release, 30, 225 (1994).

A. Rubinstein, R. Radai, M. Ezra, S. Pathak and J. S. Rokem, Pharm. Res., 10, 258 (1993).

S. F. Ahrabi, G. Madsen, K. Dyrstad, S. A. Sande and C. Graffner, Eur. J. Pharm. Sci., 10, 43 (2000).

T. Radeva, I. Petkanchin and R. Varoqui, Langmuir, 9, 170 (1993).

S. M. Cardoso, M. A. Coimbra and J. A. Lopes da Silva, Food Hydrocolloids, 17, 801 (2003).

G. C. Olivireira, S. K. Moccelini, M. Castilho, A. J. Terezo, J. Possavatz, M. R. L. Magalhaes and E. F. G. C. Dores,Talanta, 98, 130 (2012).

X. Zhang, Y. Cao, S. Yu, F. Yang and P. Xi, Biosensors and Bioelectronics, 44, 183 (2013).

K. Ramanathan, R. Mehrotra, B. Jayaram, A. S. N. Murthy and B. D. Malhotra, Anal. Lett., 29, 1477 (1996).

P. C. Pandey and A. P. Mishra, Analyst, 113, 329 (1988).

A. S. Zerda and A. J. Lesser, J. Polym. Scipart B: Polymer physics, 39, 1137 (2001).

S. K. Arya, P. R. Solanki, M. Datta and B. D. Malhotra, Biosensors and Bioelectronics, 24, 2810 (2009).

Most read articles by the same author(s)