Influence of In-Situ Annealing of Si-Rich Silicon Carbide Thin Films

Jump To References Section

Authors

  • School of Electronics Engineering, VIT University, Chennai - 600127, Tamil Nadu ,IN
  • School of Mechanical and Building Sciences, VIT University, Chennai - 600127, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jsst/2018/20097

Keywords:

In-Situ Annealing, Nanoclusters, Optoelectronics, Silicon Carbide, Spectroscopy

Abstract

Si-rich Silicon carbide thin films have grown popularity in the past decade for various opto-electronic applications. Post processing of these thin films at temperature higher than 1000oC usually lead to phase transformations to form Si nanoclusters embedded in amorphous SiC deposited by sputtering on thin films. However, the processing technique is crucial to avoid contaminants, and obtain good quality films. Therefore, a novel in-situ annealing approach within the deposition chamber is carried out at temperatures lower than usual. The influence of in-situ annealing on the material property is meticulously studied by means of Spectroscopic Ellipsometry (SE), Diffused Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FTIR). In SE, the spectra are fitted using various models; the refractive index values confirm the Si-richness of the film. The band gap (2.5 to 1.5 eV) is extracted from UV spectra using Tauc plot, which confirms the coexistence of the multiphase structure with the possibility of having Si-NC with different dimensions. The results obtained are promising for optoelectronic device applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-01-03

How to Cite

Baskar, S., & Nalini, P. (2019). Influence of In-Situ Annealing of Si-Rich Silicon Carbide Thin Films. Journal of Surface Science and Technology, 34(3-4), 116–120. https://doi.org/10.18311/jsst/2018/20097
Received 2018-03-06
Accepted 2018-06-20
Published 2019-01-03

 

References

W. J. Choyke, H. Matsunami and G. Pensl, ‘Silicon Carbide: Recent Major Advances', 2nd edn. Springer, New York, (2003). PMCid:PMC1180594 DOI: https://doi.org/10.1007/978-3-642-18870-1

F. Nava, G. Bertuccio, A. Cavallini and E. Vittones, Meas. Sci. Tech., 19, (2008). DOI: https://doi.org/10.1088/0957-0233/19/10/102001

P. M. Sarro, Sensor Actuator Phys., 82, 210 (2000). https:// doi.org/10.1016/S0924-4247(99)00335-0 DOI: https://doi.org/10.1016/S0924-4247(99)00335-0

J. P. Conde, V. Chu, F. da Silva, A. Kling, Z. Dai, J. C. Soares, S. Arekat, A. Fedorov, M. N. Berberan-Santos F. Giorgis and C. F. Pirri, J. Appl. Phys., 85 (1999). DOI: https://doi.org/10.1063/1.369679

L. Gou, C. Qi, J. Ran and C. Zheng, SiC film deposition by DC magnetron sputtering, Thin Solid Films, 345, 42 (1999). https://doi.org/10.1016/S0040-6090(99)00070-X DOI: https://doi.org/10.1016/S0040-6090(99)00070-X

A. K. Costa, S. S. Camargo Jr, C. A. Achete and R. Carius, Thin Solid Films, 243 (2000). https://doi.org/10.1016/ S0040-6090(00)01321-3

M. Mukherjee, Properties and Applications of Silicon Carbide (2011). DOI: https://doi.org/10.5772/24352

J. Huran, A. Valović, P. Boháćek, V. N. Shvetsov, A. P Kobzev, S. B. Borzakov, A. Kleinov, M. Sekáćová, J. Arbet and V. Sasinková, Appl. Surf. Sci., 269, 88 (2013). https:// doi.org/10.1016/j.apsusc.2012.10.162 DOI: https://doi.org/10.1016/j.apsusc.2012.10.162

Y. Cao, P. Lu, X. Zhang, J. Xu, L. Xu and K. Chen, Nanoscale Research Letters, 9, 634 (2014). https://doi.org/10.1186/1556-276X-9-634 DOI: https://doi.org/10.1186/1556-276X-9-634

J. Moon, S. J. Baik, O. Byungsung, J. C. Lee, Nanoscale, 7, 503 (2012). https://doi.org/10.1186/1556-276X-7-503 PMid:22953733 PMCid:PMC3493276 DOI: https://doi.org/10.1186/1556-276X-7-503

Z. Lin, Y. Guo, C. Song, J. Song, X. Wang, Y. Zhang and R. Huang, J. Alloy. Comp., 633, 153 (2015). https://doi.org/10.1016/j.jallcom.2015.02.027 DOI: https://doi.org/10.1016/j.jallcom.2015.02.027

Q. Cheng, E. Tam, S. Xu, and K. K. Ostrikov, Nanoscale, 2, 594 (2010). https://doi.org/10.1039/b9nr00371a PMid:20644764 DOI: https://doi.org/10.1039/b9nr00371a

G. Conibeer, The 48th AuSES Annual Conference, 1-3 Dec (2010).

F. Sohrabi, A. Nikniazi and H. Movla, Intech (2013).

G. Conibee, M. Green, et al. Thin Solid Films, 511, 654 (2006). https://doi.org/10.1016/j.tsf.2005.12.119

D. Di and G. Conibeer, M. A. Green, Sol. Energ Mater. Sol. Cell, 94, 2238 (2010). https://doi.org/10.1016/j.solmat.2010.07.018 DOI: https://doi.org/10.1016/j.solmat.2010.07.018

L. Mangolini, J. Vac. Sci. Tech. B, 31 (2013). DOI: https://doi.org/10.1116/1.4794789

E. C. Cho, M. A. Green, G. Conibeer, D. Song, Y. H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, Y. Huang and L. Van Dao, Adv. Optoelectron (2007). DOI: https://doi.org/10.1155/2007/69578

M. A. Green, E.-C. Cho, Y. Cho, et al., ‘All-silicon tandem cells based on "artificial” semiconductor synthesised using silicon quantum dots in a dielectric matrix', Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, June, 3 (2005).

G. Conibeer, M. A. Green, R. Corkish, et al., Thin Solid Films, 511-512, 654–662 (2006). https://doi.org/10.1016/j.tsf.2005.12.119 DOI: https://doi.org/10.1016/j.tsf.2005.12.119

M. Künle, S. Janz, K. G. Nickel, A. Heidt, M. Luysberg and O. Eibl, Sol. Energ. Mater. Sol. Cell., 115, 11(2013). https:// doi.org/10.1016/j.solmat.2013.03.011 DOI: https://doi.org/10.1016/j.solmat.2013.03.011

J. López-Vidrier, S. Hernández, J. Samí , M. Canino, M. Allegrezza, M. Bellettato, R. Shukla, M. Schnabel, P. Löper, L. López-Conesa, S. Estradé, F. Peiró, S. Janz, and B. Garrido, Mater. Sci. Eng. B, 178, 639 (2012). https://doi.org/10.1016/j.mseb.2012.10.015 DOI: https://doi.org/10.1016/j.mseb.2012.10.015

Y. Rui, S. Li, Y. Cao, J. Xu, W. Li and K. Chen, Appl. Surf. Sci., 269, 37 (2013). https://doi.org/10.1016/j.apsusc.2012.09.118 DOI: https://doi.org/10.1016/j.apsusc.2012.09.118

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Bläsing, Appl. Phys. Lett., 80, 661 (2002). https://doi.org/10.1063/1.1433906 DOI: https://doi.org/10.1063/1.1433906

F. Gourbilleau, X. Portier, C. Ternon, P. Voivenel, R. Madelon and R. Rizk, Appl. Phys. Lett., 78 (2001). https:// doi.org/10.1063/1.1371794 DOI: https://doi.org/10.1063/1.1371794

X. Chen and P. Yang, J. Mater. Sci.: Mater. Electron., 26, 4604 (2015). https://doi.org/10.1007/s10854-015-3147-4 DOI: https://doi.org/10.1007/s10854-015-3147-4

C.-H. Liang, O. Debieu, Y.-T. An, L. Khomenkova, J. Cardin, et al, J. Lumin., 132, 3118 (2012). https://doi.org/10.1016/j.jlumin.2012.01.046 DOI: https://doi.org/10.1016/j.jlumin.2012.01.046

G. A. Niklasson, C. G. Granqvist and O. Hunderi, Appl. Optic., 20 (1981). DOI: https://doi.org/10.1364/AO.20.000026

K. Nishida, K. Ono and K. Eriguchi, Jpn. J. Appl. Phys., 56 (2017). DOI: https://doi.org/10.7567/JJAP.56.06HD01

R. Shukla, C. Summonte, M. Canino, M. Allegrezza, M. Bellettato, A. Desalvo, D. Nobili, S. Mirabella, N. Sharma, M. Jangir and I. P. Jain, Adv. Compos. Lett., 3, 297(2012). DOI: https://doi.org/10.5185/amlett.2012.5346

S. Baskar and R. Pratibhanalini, Materials Today: Proceedings, 3, 2121 (2015). DOI: https://doi.org/10.1016/j.matpr.2016.04.117

R. Monga, S. K. Gupta and R. P. Nalini, Int. J. Innovat. Appl. Stud., 8, 107 (2014).

A. V. Vasin, Y. Ishikawa, A. V. Rusavsky, A. N. Nazarov, A. A. Konchitz and V. S. Lysenko, Quantum Electronics and Optoelectronics, 18, 63 (2015). https://doi.org/10.15407/ spqeo18.01.063 DOI: https://doi.org/10.15407/spqeo18.01.063

L. Tong, M. Mehregany and W. C. Tang, ‘Amorphous Silicon Carbide Films by Plasma-Enhanced Chemical Vapor Deposition, Micro Electro Mechanical Systems', IEEE MEMS ‘93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (1993).

Y.-H. Joung, H. I. Kang, J. H. Kim, H.-S. Lee, J. Lee and W. S. Choi, Nanoscale Research Letters, 7, 22 (2012). https://doi.org/10.1186/1556-276X-7-22 PMid:22221730 PMCid:PMC3276418 DOI: https://doi.org/10.1186/1556-276X-7-22

F. Gourbilleau, C. Ternon, D. Maestre, O. Palais, and C. Dufour, J. Appl. Phys., 106 (2009). https://doi.org/10.1063/1.3156730 DOI: https://doi.org/10.1063/1.3156730

C.-T. Lee, L.-H. Tsai, Y.-H. Lin, G.-R. Lin, ECS J. Solid State Sci. Technol., 1, Q144 (2012). https://doi.org/10.1149/2.005301jss DOI: https://doi.org/10.1149/2.005301jss

Q. Cheng, S. Xu, K. Ostrikov, Acta Mater., vol. 58, no. 2, pp. 560, (2010). https://doi.org/10.1149/2.005301jss DOI: https://doi.org/10.1016/j.actamat.2009.09.034

D. A. Zimnyakov, A. V. Sevrugin, S. A. Yuvchenko, F. S.Fedorov, E. V. Tretyachenko, M. A. Vikulova, D. S. Kovaleva, E. Y. Krugova and A. V. Gorokhovsky, Data in Brief, 71383 (2016).

M. Allegrezza, F. Gaspari, M. Canino, M. Bellettato, Desalvo, C. Summonte, Thin Solid Films, 556, 105 (2014). https://doi.org/10.1016/j.tsf.2014.01.025 DOI: https://doi.org/10.1016/j.tsf.2014.01.025

A. Kole, P. Chaudhuri, Thin Solid Films, 522, 45 (2012). https://doi.org/10.101https://doi.org/10.1016/j.tsf.2012.02.0786/j.tsf.2014.01.025 DOI: https://doi.org/10.1016/j.tsf.2012.02.078