Dielectric Properties of Composites of Polypropylene with Zno-TiO2 Core-Shell Nanoparticles

Jump To References Section

Authors

  • Department of Physics, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu ,IN
  • Department of Physics, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu ,IN
  • Department of Physics, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jsst/2018/20118

Keywords:

Dielectric Properties, Film Capacitor Application, Nanocomposites, Percolation Threshold, Polypropylene Matrix, ZnO-TiO2 Core-Shell Nanoparticles
Dielectric studies

Abstract

Composites of polypropylene with different weight percentages of ZnO-TiO2 core-shell nanoparticles were prepared by the combination of solution and mixture melting methods. Dielectric properties of polypropylene composite films were studied at frequencies ranging from 50 Hz to 5 MHz at four different temperatures (313, 333, 353, and 373 K). It is observed that the dielectric constant reduces quickly in the low-frequency range followed by a near frequency independent behavior above 1 KHz. The dielectric properties of composites at low frequency can be explained by interfacial polarization or Maxwell-Wagner-Sillars effect. It is also observed that the dielectric constant reaches the maximum value at 3 wt% of ZnO-TiO2, which is the percolation threshold of nanocomposite. As the weight percentage of ZnO-TiO2 increases beyond the percolation threshold up to 7%, the dielectric constant of the nanocomposites decreases. The dielectric loss of the composites follows the similar trend with frequency as the dielectric constant. A sharp increase in the dielectric loss of the nanocomposite observed near the percolation threshold is due to leakage current produced by the formation of conductive network by ZnO-TiO2 core-shell nanoparticles. Further, peaks in the loss tangent observed for the nanocomposite systems indicating the appearance of a relaxation process. These relaxations peaks were shifted to higher frequencies as the particle content increased, since relaxation processes were influenced by the interfacial polarization effect which generated electric charge accumulation around the ZnO-TiO2 core-shell nanoparticles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-01-03

How to Cite

Sampathkumar, R., Aswathy, A. V., & Balachandar, V. (2019). Dielectric Properties of Composites of Polypropylene with Zno-TiO<sub>2</sub> Core-Shell Nanoparticles. Journal of Surface Science and Technology, 34(3-4), 121–128. https://doi.org/10.18311/jsst/2018/20118
Received 2018-03-06
Accepted 2018-07-05
Published 2019-01-03

 

References

C. S. Reddy and C. K. Das, J. Appl. Polymer Sci.,102, 2117 (2006). https://doi.org/10.1002/app.24131 DOI: https://doi.org/10.1002/app.24131

G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris and G. P. Karayannidis, Thermochim. Acta., 247, 117, (2005). https:// doi.org/10.1016/j.tca.2004.09.001 DOI: https://doi.org/10.1016/j.tca.2004.09.001

O. H. Lin, H. M. Akil and Z. A. M. Ishak, Polymer. Compos., 30, 1693 (2009). https://doi.org/10.1002/pc.20744 DOI: https://doi.org/10.1002/pc.20744

P. B.Leng, H. M. Akil and O. H. Lin, J. Reinforc. Plast. Compos. 26, 761 (2007). https://doi.org/10.1177/0731684407076711 DOI: https://doi.org/10.1177/0731684407076711

O. H. Lin, Z. A. M. Ishak and H. M. Akil,Mater. Des., 30/3, 748 (2009). https://doi.org/10.1016/j.matdes.2008.05.007 DOI: https://doi.org/10.1016/j.matdes.2008.05.007

J.Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf and I. Jasiuk, Mater. Sci. Eng.,393, 1 (2005). https://doi.org/10.1016/j.msea.2004.09.044 DOI: https://doi.org/10.1016/j.msea.2004.09.044

M. Avella, F. Bondioli, V. Cannillo, Emilia Di Pace, M. E. Errico, A. M. Ferrari, B. Focher and M. Malinconico, Comp. Science and Tech., 66, 886 (2006). DOI: https://doi.org/10.1016/j.compscitech.2005.08.014

J. Vera-Agullo, G. Gloria-Pereira, H. Varela-Riz, J. L. Gonzalez and I. Martin-Gullon, Comp. Science and Tech., 69, 1521 (2009). https://doi.org/10.1016/j.compscitech.2008.11.032 DOI: https://doi.org/10.1016/j.compscitech.2008.11.032

H. Bao, Z. Guo and J. Yu, Chin. J. Polymer Sci., 27, 393 (2009). https://doi.org/10.1142/S0256767909004059 DOI: https://doi.org/10.1142/S0256767909004059

H. Xia, Q. Wang, K. Li and G. H. Hu, J. Appl. Polymer Sci, 93, 378 (2004). https://doi.org/10.1002/app.20435 DOI: https://doi.org/10.1002/app.20435

K. Prashantha, J. Soulestin, M. F. Lacrampe, M. Claes, G. Dupin and P. Krawczak, eXPRESS Polym. Lett., 2, 35 (2008). DOI: https://doi.org/10.3144/expresspolymlett.2008.87

Yong Tang, Yuan Hu, Lei Song, RuowenZong, ZhouGui, Zuyao Chen and Weicheng Fan, Polymer Degrad Stabil, 82, 127 (2003). https://doi.org/10.1016/S01413910(03)00173-3 DOI: https://doi.org/10.1016/S0141-3910(03)00173-3

P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa and A. Usuki, Macromolecules, 35, 2042 (2002). https://doi.org/10.1021/ma010852z DOI: https://doi.org/10.1021/ma010852z

D. J. Sharmila, J. Brijitta and R. Sampathkumar, J. Surface Sci. Technol. 33, 115 (2017). https://doi.org/10.18311/ jsst/2017/16187 DOI: https://doi.org/10.18311/jsst/2017/16187

P. Vlazan, D. H. Ursu, C. Irina-Moisescu, P. Sfirloaga and E. Rusu, Mater. Char., 101, 153 (2015). https://doi.org/10.1016/j.matchar.2015.01.017 DOI: https://doi.org/10.1016/j.matchar.2015.01.017

V. Manthina, J. P. Correa Baena, G. Liu, and A. G. Agrios, J. Phys. Chem, 116, 23864 (2012). https://doi.org/10.1021/ jp304622d DOI: https://doi.org/10.1021/jp304622d

A. Rakesh and S. Balakumar, J. Nanosci. Nanotech., 13, 370 (2013). https://doi.org/10.1166/jnn.2013.6730 DOI: https://doi.org/10.1166/jnn.2013.6730

Y. Dang, Y. Wang, Y. Deng, M. LI, Y. Zhang and Z. Zhang, Prog. in Nat. Science: Mat. International, 21, 216, (2011). DOI: https://doi.org/10.1016/S1002-0071(12)60033-1

C. C. Ku and R. Liepins, ‘Electrical Properties of Polymers', Hanserp (1987).

Z."M. Dang, L. Wang, Y. Yin, Q. Zhang and Q."Q. Lei. Adv. Mater., 19, 852 (2007). https://doi.org/10.1002/ adma.200600703 DOI: https://doi.org/10.1002/adma.200600703

A. Patsidis, G. C. Psarras. eXPRESS Polym. Lett., 2, 718 (2008). DOI: https://doi.org/10.3144/expresspolymlett.2008.85

G. C. Psarras, E. Manolakaki, and G. M. Tsangaris, Compos. Appl. Sci. Manuf., 12, 1187 (2003). https://doi.org/10.1016/j.compositesa.2003.08.002 DOI: https://doi.org/10.1016/j.compositesa.2003.08.002

C. W. Nan, Y. Shen and J. Ma, Annu. Rev. Mater. Res., 40, 131 (2010). https://doi.org/10.1146/annurevmatsci070909-104529 DOI: https://doi.org/10.1146/annurev-matsci-070909-104529

S. Singha, and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, 12 (2008). https://doi.org/10.1109/TDEI.2008.4446731 DOI: https://doi.org/10.1109/T-DEI.2008.4446732

Y. Deng, Y. Zhang, Y. Xiang, G. Wang and H. Xu, J. Mater. Chem., 19, 2058 (2009). https://doi.org/10.1039/b812652f DOI: https://doi.org/10.1039/b812652f

G. Tsangaris, N. Kouloumbi and S. Kyvelidis, Mater. Chem. Phys., 44, 245 (1996). https://doi.org/10.1016/02540584(96)80063-0 DOI: https://doi.org/10.1016/0254-0584(96)80063-0

Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri and C. Courtois. Process. and Apply. Ceramics, 10, 125 (2016). https://doi.org/10.2298/PAC1603125C DOI: https://doi.org/10.2298/PAC1603125C

N. Shukla, V. Kumar and D. K. Dwivedi, J. of Non-oxide Glasses, 8, 47 (2016).