Biosorption of Cu2+ from Aqueous Solution using Aspergillus oryzae and Baker's Yeast

Authors

  • University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi − 110016
  • University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi − 110016
  • University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi − 110016
  • University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi − 110016

DOI:

https://doi.org/10.18311/jsst/2019/22306

Keywords:

Biosorption, Biomass Immobilization, Pre-treatment, Desorption, Regeneration

Abstract

Present work evaluates the ability of Aspergillus oryzae and commercial dry Baker's yeast to effectively remove Cu2+ ions from aqueous solutions. Batch experiments were carried out in order to analyze sorption behavior of metal-sorbent system at different biosorbent dosage, and initial metal concentration. Various pre-treatment methods were adopted to modify the biomass, and effect of pre-treatment was investigated on biosorption efficiency. Till now, very few efforts are dedicated for application of immobilized biosorbents in literature therefore further investigations were done on the biosorption efficiency of biomass immobilized in a natural matrix which might augment stability, mechanical strength, and reusability of the biomass. Approximately 86 and 95% biosorption of copper was attained under optimum reaction conditions using Loofah immobilized with Baker's yeast, and A. oryzae, respectively. Desorption efficiency of the immobilized biomass was evaluated by performing successive biosorption-desorption cycles. Successful regeneration of Loofah sponge loaded with immobilized biosorbent was illustrated by desorbing more than 95% copper. Characterization studies were performed to examine the changes in surface morphology, and surface chemistry before and after adsorption.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

I. Suciu, C. Cosma, M. Todica, S. D. Bolboaca and L. Jantschi, Int. J. Mol. Sci., 9, 434 (2008). https://doi.org/10.3390/ ijms9040434. PMid: 19325760, PMCid: PMC2635698. DOI: https://doi.org/10.3390/ijms9040434

S.S. Ahluwalia and D. Goyal, Bioresour, Technol., 98, 2243 (2007). https://doi.org/10.1016/j.biortech.2005.12.006. PMid: 16427277. DOI: https://doi.org/10.1016/j.biortech.2005.12.006

M. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y. S. Ok and X. Cao, Crit. Rev. Env. Sci. Tech., 46, 406 (2016). https://doi.org/10.1080/1064338 9.2015.1096880. DOI: https://doi.org/10.1080/10643389.2015.1096880

N. Bordoloi, R. Goswami, M. Kumar and R. Kataki, Bioresour. Technol., 244, 1465 (2017). https://doi.org/10.1016/j.biortech.2017.05.139. PMid: 28576482. DOI: https://doi.org/10.1016/j.biortech.2017.05.139

S. Sadaf, H.N. Bhatti, S. Nausheen and M. Amin, J. Taiwan, Inst. Chem. Eng., 47, 160 (2015). https://doi.org/10.1016/ j.jtice.2014.10.001. DOI: https://doi.org/10.1016/j.jtice.2014.10.001

J.O. Babalola, B.A. Koiki, Y. Eniayewu, A. Salimonu, J.O. Olowoyo, V.O. Oninla, H.A. Alabi, A.E. Ofomaja and M. O. Omorogie, J. Environ. Chem. Eng., 4, 3527 (2016). https:// doi.org/10.1016/j.jece.2016.07.027. DOI: https://doi.org/10.1016/j.jece.2016.07.027

H. Singh, G. Chauhan, A.K. Jain, and S.K. Sharma, J. Environ. Chem. Eng., 5, 122 (2017). https://doi.org/10.1016/ j.jece.2016.11.030 DOI: https://doi.org/10.1016/j.jece.2016.11.030

L.B.C. Marcano, I.M. Carruyo, X.M. Montiel, C.B. Morales and P.M. de Soto, Biol. Trace Element Res., 130, 86 (2009). https://doi.org/10.1007/s12011-009-8316-y, PMid: 19172231. DOI: https://doi.org/10.1007/s12011-009-8316-y

B.Y. Chen, C.Y. Chen, W.Q. Guo, H.W. Chang, W.M. Chen, D.J. Lee, C.C. Huang, N.Q. Ren and J.S. Chang, Bioresour. Technol., 160, 175 (2014). https://doi.org/10.1016/j.biortech.2014.02.006. PMid: 24581862. DOI: https://doi.org/10.1016/j.biortech.2014.02.006

C.Y. Chen, H.W. Chang, P.C. Kao, J.L. Pan and J.S. Chang, Bioresour. Technol., 105, 74 (2012). https://doi.org/10.1016/j.biortech.2011.11.124, PMid: 22178497. DOI: https://doi.org/10.1016/j.biortech.2011.11.124

Z. Zhang, Q. Pang, M. Li, H. Zheng, H. Chen and K. Chen, Environ. Sci. Pollut. Res., 22, 1085 (2015). https://doi.org/10.1007/s11356-014-3409-3. PMid: 26392092. DOI: https://doi.org/10.1007/s11356-014-3409-3

Y.M. Sun, C.Y. Horng, F.L. Chang, L.C. Cheng and W.X. Tian, Polish. J. Microbio., 59, 37 (2010). DOI: https://doi.org/10.33073/pjm-2010-005

G. Kirova, Z, Velkova, M. Stoytcheva, Y. Hristova, I. Iliev and V. Gochev, Biotech. Biotechnol. Equip., 29, 689 (2015). https://doi.org/10.1080/13102818.2015.1036775. DOI: https://doi.org/10.1080/13102818.2015.1036775

M. Hosseini, A.R. Keshtkar and M.A. Moosavian, Bull. Mater. Sci., 39, 1091 (2016). https://doi.org/10.1007/s12034-0161260-5. DOI: https://doi.org/10.1007/s12034-016-1260-5

J.Y. Farah, N. El-Gendy and L.A. Farahat, J. Hazard. Mater. 148, 402 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.053. PMid: 17400371. DOI: https://doi.org/10.1016/j.jhazmat.2007.02.053

R. Pratibha, P. Malar, T. Rajapriya, S. Balapoornima and V. Ponnusami, Desalination., 264, 102 (2010). https://doi.org/10.1016/j.desal.2010.07.011. DOI: https://doi.org/10.1016/j.desal.2010.07.011

Z. Zhang, D. Liu, F. Feng, J. S. Li, M. Li, Q. Pang and K. P. Chen, Water Sci. Technol., 67, 772 (2013). https://doi.org/10.2166/wst.2012.631, DOI: https://doi.org/10.2166/wst.2012.631

J. Wang and C. Chen, C. Biotechnol. Adv., 27, 195 (2008). https://doi.org/10.1016/j.biotechadv.2008.11.002. PMid: 19103274. DOI: https://doi.org/10.1016/j.biotechadv.2008.11.002

J. Wang and C. Chen, Biotechnol. Adv., 24, 427 (2006). https://doi.org/10.1016/j.biotechadv.2006.03.001. PMid: 16737792. DOI: https://doi.org/10.1038/nbt1006-1224

M. D. Machado, E. V. Soares and H. M. V. M. Soares, J. Hazard. Mater., 180, 347 (2010). https://doi.org/10.1016/ j.jhazmat.2010.04.037. PMid: 20452730.

Industrial Metals Stock Outlook - April 2017, Accessed in June 2018. http://www.nasdaq.com/article/industrialmetalsstock-outlook-april-2017-cm772450.

G. Chauhan, K.K. Pant and K.D.P. Nigam, Ind. Eng. Chem. Res., 52, 16724 (2013). https://doi.org/10.1021/ie4024484. DOI: https://doi.org/10.1021/ie4024484

G. Chauhan, K.K. Pant and K.D.P. Nigam, Ind. Eng. Chem. Res., 51, 10354 (2012). https://doi.org/10.1021/ie300580v, https://doi.org/10.1021/ie201701t. DOI: https://doi.org/10.1021/ie300580v

F.A. Csonka, J. Biol. Chem., 109, 703 (1935). DOI: https://doi.org/10.1016/S0021-9258(18)75202-2

E. Galli, F.D. Mario, P. Rapana, P. Lorenzoni and R. Angelini, Lett. Appl. Microbio., 37, 133 (2003). https://doi.org/10.1046/j.1472-765X.2003.01354.x. PMid: 12859655. DOI: https://doi.org/10.1046/j.1472-765X.2003.01354.x

N. Goyal, S.C. Jain and U.C. Banerjee, Adv. Environ. Res., 7, 311 (2003). https://doi.org/10.1016/S1093-0191(02)00004-7. DOI: https://doi.org/10.1016/S1093-0191(02)00004-7

C. Cojocaru, M. Diaconu, I. Cretescu, J. Savic and V. Vasic, Colloid. Surface. A., 335, 181 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.003. DOI: https://doi.org/10.1016/j.colsurfa.2008.11.003

A.I. Ferraz and J.A. Teixeira, Bioproc. Eng., 21, 431 (1999). https://doi.org/10.1007/PL00009083. DOI: https://doi.org/10.1007/PL00009083

J.L. Wang, Beijing: Science Press (2002).

S. Al-Asheh and Z. Duvnjak, Biotechnol. Prog., 11, 638 (1995). https://doi.org/10.1021/bp00036a006. PMid: 8541015. DOI: https://doi.org/10.1021/bp00036a006

Y. Su, Y. Jiao and C. Dou, Desalin. Water Treat., 52, 6145 (2014). https://doi.org/10.1080/19443994.2013.811121. DOI: https://doi.org/10.1080/19443994.2013.811121

K.M. Mousa and A.H. Taha, J. Chem. Eng. Proc. Tech., 6, 260 (2015).

A. í–zer and D. í–zer, J. Hazard. Mater. B., 100, 219 (2003). https://doi.org/10.1016/S0304-3894(03)00109-2. DOI: https://doi.org/10.1016/S0304-3894(03)00109-2

Forster, C.F., & Wase, D.J. (Eds.). Biosorbents for metal ions. New York: Taylor & Francis (1997).

K. Kusmierek and A. Swiatkowski, React. Kinet. Mech. Cat., 116, 261 (2015). https://doi.org/10.1007/s11144-015-08891.

C. Huang and C.P. Huang, Water Res., 30, 1985 (1996). https://doi.org/10.1016/0043-1354(96)00020-6. DOI: https://doi.org/10.1016/0043-1354(96)00020-6

E.L. Errasquí­n and C. Vázquez, C. Chemosphere., 50, 137 (2003). https://doi.org/10.1016/S0045-6535(02)00485-X. DOI: https://doi.org/10.1016/S0045-6535(02)00485-X

Y. Zhang, W. Liu, M. Xu, F. Zheng and M. Zhao, J. Hazard. Mater., 178, 1085 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.051. DOI: https://doi.org/10.1016/j.jhazmat.2010.02.051

P. Vasudevan, V. Padmavathy and S.C. Dhingra, Bioresour. Technol., 82, 285 (2002). https://doi.org/10.1016/S09608524(01)00181-X. DOI: https://doi.org/10.1016/S0960-8524(01)00181-X

J. Rincon, F. Gonazalez, A. Ballester, M.L. Blazquez and J.A. Munoz, J. Chem. Tech. Biotech., 80, 1403 (2005). https://doi.org/10.1002/jctb.1342. DOI: https://doi.org/10.1002/jctb.1342

A.M. Stanescu, L. Stoica, C. Constantin, I. Lacatusu, O. Oprea and F. Miculescu, Clean – Soil, Air, Water., 42, 1632 (2014). https://doi.org/10.1002/clen.201300484. DOI: https://doi.org/10.1002/clen.201300484

K. Vijayaraghavan, K. Palanivelu and M. Velan, Bioresour. Technol., 97, 1411 (2006). https://doi.org/10.1016/j.biortech.2005.07.001. PMid: 16112568. DOI: https://doi.org/10.1016/j.biortech.2005.07.001

Published

2020-01-31

How to Cite

Sinha, R., Chauhan, G., Singh, A., & Kumar, A. (2020). Biosorption of Cu<sup>2+</sup> from Aqueous Solution using <i>Aspergillus oryzae</i> and Baker’s Yeast. Journal of Surface Science and Technology, 35(3-4), 128–139. https://doi.org/10.18311/jsst/2019/22306