Recent Studies on the Drug Delivery of Nebulizers - A Review

Jump To References Section


  • School of Mechanical Engineering, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai – 600127, Tamil Nadu ,IN
  • School of Mechanical Engineering, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai – 600127, Tamil Nadu ,IN



Aerosol, Atomizer, Computational Fluid Dynamics (CFD), Dew Size, Drug Delivery, Nebulization, Nebulizer


This article provides a summary of some of the most current research on the delivery of drugs to the lungs, as well as a discussion of some of the limitations of these studies. Nebulizers have been in use for more than a century to deliver aerosolized drugs to patients suffering from respiratory disorders. Aerosol devices such as these are the best option for people who have trouble managing their inhalation. Because of the actuation required, pressurised Metered-Dose Inhalers (pMDI) and Dry Powder Inhalers (DPI) are unable to generate the necessary inspiratory flow required for successful aerosol drug delivery. Currently, we are looking into how the working mechanism of different nebulizers interacts with the physicochemical features of the formulations. We are looking into a wide range of devices, such as jet, ultrasonic, and vibrating-mesh nebulizers. In this study, the researchers hope to describe the many different types of nebulizers that are currently available on the market, evaluate their performance in aerosol drug delivery, and recommend treatment approaches for patients with chronic obstructive pulmonary disease.


Download data is not yet available.


Metrics Loading ...



How to Cite

Vinoth, N., & Bhaskara Rao, L. (2023). Recent Studies on the Drug Delivery of Nebulizers - A Review. Journal of Surface Science and Technology, 37(3-4), 131–140.
Received 2019-08-18
Accepted 2022-05-06
Published 2023-02-15



T. Shakked, D. Katoshevski, M. David, I. Amirav, J. of Aerosol Med., 18, 207 (2005). PMid:15966775. DOI:

M. Rehman, A. Metcalf, R. Hatley, Clin. Transl. Allergy, 3, 10 (2013). P11. DOI:

Y.C. Chang, H.W. Chen, S.S. Yu, K.Y. Cheng, J. Aerosol Sci., 31, 923 (2000). 8502(00)90933-9. DOI:

D. M. Protheroe, A. Al-Jumaily, J. Roy, Int. J. Heat Mass Transf., 60, 772 (2013). 2013.01.053. DOI:

W. Wong, D. F. Fletcher, D. Traini, H-K. Chan, M.P. Young, Adv. Drug Deliv. Rev., 64, 312 (2012). PMid:22063020. DOI:

O.N.M. Mccallion, K.M.G. Taylor, M.B. Thomas, A.J. Taylor, Int. J. Pharm., 130, 1 (1996). DOI:

C. Roth, J. Gebhart, J. Aerosol Sci., 24, 449 (1993). DOI:

G. Enrique, Yanes, J. Nancy, Miller-Ihli, Spectrochim Acta Part B., 59, 883 (2004). DOI:

K.W. Stapleton, E. Guentsch, M.K. Hoskinson, W.H. Finlay, J. Aerosol Sci., 31, 739 (2000). DOI:

T.L. Holbrook, P. Worthlongest, J. Aerosol Sci., 59, 6 (2013). DOI:

D. Parone, M. Stauss, J. Emerg Nurs, 40, 131 (2014). PMid:23369770. DOI:

C. Schultsza, H.M.M. Meestera, A.M.H. Kranenburga, P.H.M. Savelkoula, L.E.A. Boeijen-Donkersa, A.M. Kaisera, R. DeBreeb, G.B. Snowb, C.J.M.E. Vandenbroucke-Graulsa, J. Hosp. Infect., 55, 269 (2003). DOI:

M.Y. Yang, J.G.Y. Chan, H-K. Chan, J. Control Release, 193, 228 (2014). 2014.04.055. PMid:24818765. DOI:

P. Zarogoulidisa, D. Petridis, C. Ritzoulis, K. Darwicheb, I. Kioumisa, K. Porpodisa, D. Spyratosa, W. Hohenforst- Schmidtd, L. Yarmuse, H. Huangf, F.Q. Li, L. Freitagb, K. Zarogoulidisa, Int. J. Pharm., 456, 325 (2013). PMid:24035789. DOI:

A. Arzhavitina, H. Steckel, Int. J. Pharm., 384, 128 (2010). PMid:19825407. DOI:

L. Vecellioa, P. Kippaxb, S. Rouquettec, P. Diot, Int. J. Pharm., 371, 99 (2009). PMid:19150494.

A.M.A. Elhissi, M. Faizi, W.F. Naji, H.S. Gill, K.M.G. Taylor, Int. J. Pharm., 334, 62 (2007). PMid:17123757. DOI:

R. Price, P.M. Young, S. Edge, J.N. Staniforth, Int. J. Pharm., 246, 47 (2002). DOI:

L. Khatri, K.M.G. Taylor, D.Q.M. Craig, K. Palin, Int. J. Pharm., 227, 121 (2001). DOI:

E.A. Hathway, C.J. Noakes, P.A. Sleigh, L.A. Fletcher, Build Environ., 46, 2500 (2011). PMid:32288014 PMCid:PMC7126191. DOI:

E. Allen, Haddrella, F.J. Daviesa, E.H.R. Milesa, P.J. Reida, L.A. Daileyb, D. Murnanec, Int. J. Pharm., 463, 50 (2014). DOI:

D.A. Groneberg, C. Witt Wagner, K.F. Chungz, A. Fischer, Respir. Med., 97, 382 (2003). PMid:12693798. DOI:

S. Stegemann, S. Kopp, G. Borchard, V.P. Shah, S. Senel, R. Dubey, N. Urbanetz, Cittero, A. Schoubben, C. Hippchen, D. Cade, A. Fuglsangm, J. Morais, L. Borgström, F. Farshi, K.H. Seyfang, R. Hermann, A. Van De Putte, I. Klebovich, A. Hincal, Eur. J. Pharm. Sci., 48, 181 (2013). PMid:23142635. DOI:

H. Steckel, F. Eskandar, Eur. J. Pharm. Sci., 19. 443 (2003). DOI:

A.K. Sena, J. Darabia, D.R. Knapp, Sens. Actuators B, 137, 789 (2009). PMid:20161284 PMCid:PMC2682712. DOI:

S-C. Shen, Y-J. Wang, Y-Y. Chen, Sens. Actuators A, 144, 135. DOI:

G.A. Zachariadis, C.E. Michos, J. Pharm. Biomed. Anal., 43, 951 (2007). PMid:17045773. DOI:

E. Paredes, J. Bosque, J.M. Mermet, J.L. Todoll, Spectrochim Acta Part B, 65, 908 (2010). DOI:

L. Eklund, M. Sundblad, P. Malmberg, K. Larsson, Respir Med., 94, 139 (2000). PMid:10714419. DOI:

K.M. Lester, A.P. Flume, L.S. Gray, D. Anderson, C.M. Bowman, Respir Care, 49, 1504 (2004).

B.T. Martonen, D.H. Smyth, K.K. Isaacs, T.R. Burton, Respir Care, 50, 1228 (2005).

M. Yanai, J. Hatazawa, F. Ojima, H. Sasaki, M. Itoh, T. Ido, Eur. Respir. J., 11, 1342 (1998). PMid:9657577. DOI:

S.P. Newman, G.R. Pitcairn, G. Hooper, G. Knoch, Eur. Respir. J., 7, 1177 (1994). DOI:

C.J. Harvey, M.J. O’doherty, C.J. Page, S.H.L. Thomas, T.O. Nunan, D.F. Treacher, Eur. Respir. J., 10, 905 (1997). DOI:

A.L. Naumov., I.A. Tabunshchikov, D.V. Kapko., M.M. Brodach, Energy Build., 86, 314-317 (2015). DOI:

D. Deshpande, J. Blanchard, S. Srinivasan, D. Fairbanks, J. Fujimoto, T. Sawa, J. Wiener-Kronish, H. Schreier, I. Gonda, AAPS Pharm. Sci. Tech., 4, 1 (2002). PMid:12423062 PMCid:PMC2751352. DOI:

T. Gemcia, B. Shortalla, G.M. Allena, T.E Corcoranb, N. Chigiera, J. Aerosol Sci., 34, 1175 (2003). DOI:

P-C. Chiang, J. W. Alsup, Y. Lai, Y. Hu, B.R. Heyde, D. Tung, Nanoscale Res. Lett., 4, 254-261 (2009). PMid:20596335 PMCid:PMC2894320. DOI:

A.C. Anselmo, S. Mitragotri, J. Control Release, 190, 15 (2014). PMid:24747160 PMCid:PMC4142089. DOI:

X. Zhanga, Q. Liua, J. Hua, L. Xub, W. Tana, Acta Pharm. Sin. B, 4, 79 (2014). DOI:

L. Vecellioa, P. Kippaxb, S. Rouquettec, P. Diot, Int. J. Pharm, 371, 99 (2009). PMid:19150494. DOI:

R. Pearson, R.M. Fitzgerald, J. Polanco, J. Pure Appl. Math, 9, 56 (2007). 4258/9/1/010. DOI:

Q. (Tony) Zhou, S.S.Y. Leung, P. Tang, T. Parumasivama, Z.H. Loh, H-K Chan, Adv. Drug Deliv. Rev., 85, 83 (2015). PMid:25451137. DOI:

H. Diederik, P.P.H. Le Brun, H.W. Frijlink, P.M.B. Vitányi, M. Weda, D.M. Barends, Int. J. Pharm., 257, 33 (2003). 1. DOI:

D.Y. Arifin, L.Y. Lee, C-H. Wang, Adv. Drug Deliv. Rev., 58, 1274 (2006). PMid:17097189. DOI:

A. Paul, Bridges, Kevin, M.G Taylor, Int. J. Pharm., 204, 69 (2000). 4. DOI:

A. Paul, Bridges, M.G. Kevin Taylor, Int. J. Pharm., 173, 117 (1998). 5173(98)00212-9. DOI:

Inthavonga, K. Tiana, Z.F. Tua, J.Y. Yangb, W., C. Xuec, Comput. Biol. Med., 38, 713 (2008). T. Kissela, J. Control Release, 86, 131 (2003). 3659(02)00370-X.