The aggregation of 1,3,4-thiadiazole based Hockey stick shaped Mesogen in Langmuir-Blodgett thin film in comparison to that of 1,3,4-oxadiazole


Affiliations

  • Tripura University, Department of Chemistry, Agartala, Tripura, 799022, India
  • G.D. College, Department of Chemistry, Harerkhola, Tripura, 799285, India
  • Assam University, Department of Chemistry, Silchar, Assam, 788011, India

Abstract

Bent Core Mesogens are remarkably interesting achiral Liquid Crystals. These grab attention for their utility. The compound, taken for investigation, is a Schiff base addition product, composed of 2-(4?-aminophenyl)-5-(4??-butyloxyphenyl)-1,3,4- thiadiazole and 4-n-hexadecyloxy salicylaldehyde. The property of this imine derivative is in accordance with liquid crystal and is a Bent Core Mesogen (BCM). The thin layers were prepared with the help of Langmuir-Blodgett apparatus. The morphology and photo-physical characteristics of thin films were examined in comparison to similar BCM derivative of 1,3,4-Oxadiazole. The expectation was the formation of monolayer of molecules on the substrate. Practically there were layer of clusters on the substrate. Both molecules form nano clusters. The typically different aggregates by the thiadiazole moiety in comparison to oxadiazole moiety are revealed. Cluster formation is also supported by the Atomic Force Microscopic (AFM) images.

Keywords

1,3,4-Oxadiazole Derivative, 1,3,4-Thiadiazole Derivative, Bent Core Mesogen, Langmuir Blodgett, Liquid Crystal, Thin Film

Subject Discipline

Physical Chemistry

Full Text:

References

S. A. Hussain, B. Dey, D. Bhattacharjee, N. Mehta, Heliyon, 4, 12 (2018). https://doi.org/10.1016/j.heliyon.2018.e01038. PMid:30582053 PMCid:PMC6298938.

S. A. Hussain, D. Bhattacharjee, Mod. Phys. Lett. B, 23, 3437 (2009). https://doi.org/10.1142/S0217984909021508.

S. Kumar, S.-W. Kang, Ency. of Condens. Matter Phys., 111 (2005). https://doi.org/10.1016/B0-12-369401-9/00690-2.

D. Scutaru, I. Carlescu, E.-R. Bulai (Cioanca), C. Ionica Ciobanu, G. Lisa, N. Hurduc, Liq. Cryst.- Self-Organized Soft Functional Materials for Advanced Applications, (2019). https://doi.org/10.5772/intechopen.81704. PMCid:PMC7089293.

S. K. Saha, J. Deb, U. Sarkar, M. K. Paul, Liq. Cryst., 44, 2203 (2017). https://doi.org/10.1080/02678292.2017.1331269.

A. Baidya, B. Das, S. Majumder, S. K. Saha, R. K. Nath, M. K. Paul, J. Dispers. Sci. Technol., 1, (2020). https://doi.org/1 0.1080/01932691.2020.1848584.

S. K. Saha, B. Bhattacharya, U. Sarkar, D. S. Shankar Rao, M. K. Paul, J. Mol. Liq., 241, 881 (2017). https://doi. org/10.1016/j.molliq.2017.06.067.

S. K. Saha, M. K. Paul, Liq. Cryst., 46, 386 (2019). https://doi.org/10.1080/02678292.2018.1502372.

S. K. Saha, M. K. Paul, A. Chandran, P. K. Khanna, A. M. Biradar, Liq. Cryst., 44, 1739 (2017). https://doi.org/10.1080 /02678292.2017.1336678.

B. Gür, K. Meral, J. Mol. Struct., 1197, 227 (2019). https://doi.org/10.1016/j.molstruc.2019.07.051.

K. Ou, X. Xu, Y. Shao, W.-J. Wang, W.-B. Zhang, S.-G. Yang, Chin. J. Polym. Sci., 37, 604 (2019). https://doi.org/10.1007/ s10118-019-2234-z.

A. Modli?ska, D. Bauman, Int. J. Mol. Sci., 12, 4923 (2011). https://doi.org/10.3390/ijms12084923. PMid:21954335 PMCid:PMC3179142

V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. A. Heiney, P. J. Collings, Phys. Rev. E, 72, 041710 (2005). https://doi. org/10.1103/PhysRevE.72.041710. PMid:16383405

B. Di Napoli, C. Mazzuca, P. Conflitti, M. Venanzi, A. Palleschi, J. Phys. Chem. C, 122, 515 (2017). https://doi. org/10.1021/acs.jpcc.7b09850.

A. Modli?ska, E. Piosik, J. Paluszkiewicz, T. Marty?ski, J. Lumin., 148, 44 (2014). https://doi.org/10.1016/j.jlumin. 2013.11.063.

T. Frolov, Y. Mishin, J. Chem. Phys., 143, 044706 (2015). https://doi.org/10.1063/1.4927414. PMid:26233156.

P. K. Paul, M. N. Islam, D. Bhattacharjee, S. A. Hussain, Chinese Phys. Lett., 24, 1331 (2007). https://doi. org/10.1088/0256-307x/24/5/057.

J. Nath, R. K. Nath, A. Chakraborty, S. A. Husain, Surf. Rev. Lett., 21, 1450049 (2014). https://doi.org/10.1142/ S0218625X14500498.

A. Pal, B. K. Mishra, S. Panigrahi, R. K. Nath, Int. J. Green Nanotechnol., 4, 155, (2012). https://doi.org/10.1080/19430 892.2012.676923.

A. Pal, B. K. Mishra, S. Panigrahi, R. K. Nath, Mol. Cryst. Liq. Cryst., 557, 253 (2012). https://doi.org/10.1080/15421 406.2011.642728.

A. Matwijczuk, A. Górecki, M. Makowski, K. Pustu?a, A. Skrzypek et al., Gago?, J. Fluoresc., 28, 65 (2017). https://doi.org/10.1007/s10895-017-2175-2. PMid:28889356 PMCid:PMC5799588.

L. G. S. Brooker, G. H. Keyes, D. W. Heseltine, J. Am. Chem. Soc., 73, 5350 (1951). https://doi.org/10.1021/ja01155a097.

D. R. Joshi, N. Adhikari, J. Pharm. Res. Int., 28, 1 (2019). https://doi.org/10.9734/jpri/2019/v28i330203.

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA Publishers, 2003, 3rd Ed. Print ISBN:9783527306183, Online ISBN:9783527601790. https://doi.org/10.1002/3527601791.

S. Kang, Y. Saito, N. Watanabe, M. Tokita, Y. Takanishi et al., J. Phys. Chem. B, 11011), 5205 (2006). https://doi. org/10.1021/jp057307a. PMid:16539449

S. K. Saha, M. K. Paul, Liq. Cryst., 46, 386 (2019). https://doi.org/10.1080/02678292.2018.1502372.

M. Más-Montoya, R. A. J. Janssen, Adv. Funct. Mater., 27, 1605779 (2017). https://doi.org/10.1002/adfm.201605779.

J. O. Jung, R. B. Gerber, J Chem. Phys., 105, 10682 (1996). https://doi.org/10.1063/1.472876.

E. G. McRae, Am. J. Phys. Chem., 61, 562 (1957). https://doi.org/10.1021/j150551a012.

K. Kalyanasundaram, J. K. Thomas, Am. J. Phys. Chem., 81, 2176 (1977). https://doi.org/10.1021/j100538a008.

X. Gan, G. Liu, M. Chu, W. Xi, et al., Org. Biomol. Chem., 15, 256 (2017). https://doi.org/10.1039/c6ob02181f. PMid:27901535.

L. T. Chu, H. M. Leung, P. K. Lo, T.-H. Chen, Sens. Actuators B Chem., 306, 127564 (2020). https://doi.org/10.1016/j. snb.2019.127564.

P. Deria, J. Yu, T. Smith, R. P. Balaraman, J. Am. Chem. Soc., 139, 5973 (2017). https://doi.org/10.1021/jacs.7b02188. PMid:28385020

H. K. Sinha, K. Yates, Can. J. Chem., 69, 550 (1991). https://doi.org/10.1139/v91-083.

Y. Deng, W. Yuan, Z. Jia, G. H- Liu, J. Phys. Chem. B, 118, 14536 (2014). https://doi.org/10.1021/jp510520m. PMid:25402824.

D. J. Lockwood, Chapter- Rayleigh and Mie Scattering. Luo, M. Ronnier (editor). Book- Encyclopedia of Color Science and Technology, New York: Springer Reference, 2016. P. 1097-1107. https://engineering.purdue.edu/ wcchew/ece604f19/Lecture%20Notes/Lect34.pdf. https://doi.org/10.1007/978-1-4419-8071-7_218.

G. S. He, H.-Y. Qin, Q. Zheng, J. Appl. Phys., 105, 023110 (2009). https://doi.org/10.1063/1.3068473.

S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, et al., Opt. Express, 21, 20656 (2013). https://doi.org/10.1364/OE.21.020656. PMid:24103939.

F. J. Giessibl, Rev. Mod. Phys., 75, 949 (2003). https://doi.org/10.1103/RevModPhys.75.949.

A. V. Singh, M. Galluzzi, F. Borghi, M. Indrieri, V. Vyas, A. Podestà, W. N. Gade, J. Nanosci. Nanotechnol., 13, 77 (2013). https://doi.org/10.1166/jnn.2013.6727. PMid:23646700.

A. Tronin, T. Dubrovsky, C. Nicolini, Langmuir, 11, 385 (1995). https://doi.org/10.1021/la00002a001.

L. Wang, S. Li, E. Ruiz-Agudo, C. V. Putnis, A. Putnis, Cryst. Eng. Comm, 14, 6252 (2012). https://doi.org/10.1039/ C2CE25669J.

J. Hövelmann, C. Putnis, L. Benning, Minerals, 8, 346 (2018). https://doi.org/10.3390/min8080346.

D. G. Gromov, E. A. Lebedev, A. I. Savitskiy, A. Y. Trifonov, V. V. Rubcov, N. I. Borgardt, Y. S. Grishina, J. Phys. Conf., 643, 012014 (2015). https://doi.org/10.1088/1742- 6596/643/1/012014.

X. Chen, N. Zhang, K. Sun, J. Mater. Chem., 22, 13637 (2012). https://doi.org/10.1039/C2JM32014B.

A. Nisar, Y. Lu, X. Wang, Chem. Mater., 22, 3511-3518 (2010). https://doi.org/10.1021/cm100691a.


Refbacks

  • There are currently no refbacks.