Acid Modified Graphene Oxide from used Battery Rods Loaded with 2-{(E)-[(3-hydroxyphenyl) imino] methyl} phenol: Electrochemical Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid in Aqueous Medium

Authors

  • Diganta Kumar Das Department of Chemistry, Gauhati University, Guwahati – 781014, Assam
  • Priyakshi Bordoloi Department of Chemistry, Gauhati University, Guwahati – 781014, Assam

DOI:

https://doi.org/10.18311/jsst/2021/28855

Keywords:

Dopamine, Graphene Oxide, Sensor, Voltammetry

Abstract

The graphite rods of used batteries have been utilized as source for Graphene Oxide (GO). The Acid Modified Graphene Oxide (AMGO) is loaded with Schiff base obtained from salicylaldehyde and 3-amino phenol. Glassy Carbon Electrode (GCE) surface when modified with the Schiff base loaded AMGO acts as electrochemical sensor for Dopamine (DA) in presence of Uric Acid (UA) and Ascorbic Acid (AA). Cyclic Voltammetry (CV), Square Wave Voltammetry (SWV) and Differential Pulse Voltammetry (DPV) shows well separated peaks for DA from UA and AA. The DA peak intensity increases in the three techniques with DA concentration. The linear range for the detection of dopamine is observed from 9.09 × 10-4 M to 1.70 × 10-3 M in presence of 1.00 × 10-1 M Ascorbic Acid and 1.00 × 10-2 M uric acid. The detection limit is estimated to be 9.38 × 10-10 M.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

N. Tukimin, J. Abdullah, Y. Sulaiman, J. Electrochem. Soc., 165, B258 (2018). https://doi.org/10.1149/2.0201807jes.

Y. H. Chang, P. M. Woi, Y. B. Alias, Microchem. J., 148, 322 (2019). https://doi.org/10.1016/j.microc.2019.04.081.

X. Chen, D. Li, W. Ma, T. Yang, Y. Zhang, D. Zhang, Microchim Acta (2019). https://doi.org/10.1007/s00604- 019-3518-2. PMid:31183562.

H. Huang, Y. Yue, Z. Chen, Y. Chen, S. Wu, J. Liao, S. Liu, H. Wen, Microchim Acta (2019). https://doi.org/10.1007/ s00604-019-3299-7. PMid:30771002.

B. N. Chandrashekar, W. Lv, G. K. Jayaprakash, K. Harrath, L. W. Y. Liu, B. E. K. Swamy, Chemosensors (2019). https://doi.org/10.3390/chemosensors7020024.

D. L. Huang, J. Wang, H. Q. Yuan, H. S. Guo, X. Ying, H. Zhang, H. Y. Liu, J. Porphyr. Phthalocyanines, 22, 1 (2018). https://doi.org/10.1142/S1088424618500761.

O. E. Fayemi, A. S. Adekunle, B. E. K. Swamy, E. E. Ebenso, J. Electroanal. Chem., 818, 236 (2018). https://doi.org/10.1016/j.jelechem.2018.02.027.

S. I. Kaya, S. Kurbanoglu, S. A. Ozkan, Crit. Rev. Anal. Chem., 49, 101 (2018). https://doi.org/10.1080/10408347.2018.1489217. PMid:30574792.

J. L. Berfield, L. C. Wang, M. E. A. Reith, J. Biol. Chem., 274, 4876 (1999). https://doi.org/10.1074/jbc.274.8.4876. PMid:9988729.

C. Gong, W. Wang, K. Bowen, X. Zhang, J. Phys. Chem., 123, 7695 (2019). https://doi.org/10.1021/acs.jpcb.9b06223. PMid:31429554.

M. Asif, A. Aziz, H. Wang, Z. Wang, W. Wang, M. Ajmal, F. Xiao, X. Chen, H. Liu, Microchim Acta, 186, 61 (2019). https://doi.org/10.1007/s00604-018-3158-y. PMid:30627779.

H. R. Zare-Mehrjardi, Anal. Bioanal. Electrochem., 10, 52 (2018).

V. M. A. Mohanan, A. K. Kunnummal, V. M. N. Biju, J. Mater. Sci., 53, 10627 (2018). https://doi.org/10.1007/s10853-018-2355-8.

J. Pereyra, M. V. Martinez, C. Barbero, M. Bruno, D. Acevedo, J. Compos. Sci. (2019). https://doi.org/10.3390/jcs3010001.

C. Rajkumar, B. Thirumalraj, S. M. Chen, H. A. Chen, J. Colloid Interface Sci., 487, 149 (2017). https://doi.org/10.1016/j.jcis.2016.10.024. PMid:27768998.

R. A. de Toledo, M. C. Santos, E. T. G. Cavalheiro, L. H. Mazo, Anal. Bioanal. Chem., 381, 1161 (2005). https://doi.org/10.1007/s00216-005-3066-y. PMid:15714300.

A. Saini, A. Kumar, V. K. Anand, S. C. Sood, Int. J. Eng. Trends Technol., 40, 67 (2016). https://doi.org/10.14445/22315381/IJETT-V40P211.

M. S. Mukhtar, N. Y. Pindiga, B. Magaji, J. O. Nnamani, M. M. Saddam, JMSRR, 5, 26 (2020).

L. Ma, Q. Zhang, C. Wu, Y. Zhan, L. Zeng, Anal. Chim. Acta, 1055, 17 (2019) https://doi.org/10.1016/j.aca.2018.12.025. PMid:30782366.

J. Rajbongshi, D. K. Das, S. Mazumdar, Electrochim. Acta, 55, 4174 (2010). https://doi.org/10.1016/j.electacta. 2010.02.045.

A. S. Lamari, A. Fattouh, S. E. Qouatli, R. Najih, A. Chtaini, Acta Tech Corvin., Bull. Eng., 11, 39 (2013).

T. Thomas, R. J. Mascarenhas, C. Nethravathi, M. Rajamathi, B. E. K. Swamy, J. Electroanal. Chem., 659, 113 (2011). https://doi.org/10.1016/j.jelechem.2011.05.011.

M. Mallesha, R. Manjunatha, C. Nethravathi, G. S. Suresh, M. Rajamathi, J. S. Melo, T. V. Venkatesha, Bioelectrochem, 81, 104 (2011). https://doi.org/10.1016/j.bioelechem.2011.03.004. PMid:21497563.

X. Ma, M. Chao, Z. Wang, Anal. Methods, 4, 1687 (2012). https://doi.org/10.1039/c2ay25040c.

H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, Y. Du, RSC Adv., 4, 26895 (2014). https://doi.org/10.1039/c4ra03148b.

M. Wang, M. Cui, W. Liu, X. Liu, J. Electroanal. Chem., 832, 174 (2019). https://doi.org/10.1016/j.jelechem.2018.10.057.

H. Yang, J. Zhao, M. Qiu, P. Sun, D. Han, L. Niu, G. Cu, Biosens. Bioelectron., 191, 124, (2019). https://doi.org/10.1016/j.bios.2018.10.012. PMid:30388561.

Published

2022-05-12

How to Cite

Kumar Das, D., & Bordoloi, P. (2022). Acid Modified Graphene Oxide from used Battery Rods Loaded with 2-{(E)-[(3-hydroxyphenyl) imino] methyl} phenol: Electrochemical Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid in Aqueous Medium. Journal of Surface Science and Technology, 37(1-2), 83–103. https://doi.org/10.18311/jsst/2021/28855

Issue

Section

Articles