Interfacial Interactions of Monoolein Langmuir Monolayers with Aqueous Salt Solutions

Authors

  • Balaji S. Dhopte Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology – Surat, Ichchhanath, Surat – 395007, Gujarat
  • V. N. Lad Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology – Surat, Ichchhanath, Surat – 395007, Gujarat

DOI:

https://doi.org/10.18311/jsst/2021/28882

Keywords:

Air-Water Interface, Langmuir Monolayer, Monoolein Lipid, Phase Transition, Salt subphases

Abstract

Langmuir monolayer is a unique tool to characterize the interface which describes the properties of insoluble monolayer on the sub-phase. Langmuir monolayers have demonstrated the characteristics of many macromolecules as well as amphiphilic molecules at the air-water interface. We evaluated physiochemical characteristics of monoolein lipid Langmuir monolayers on different sub-phases. Interfacial behaviour of monoolein lipid was investigated using Wilhelmy plate pressure sensor technique to generate Langmuir isotherms to explore the effects of interactions with different sub-phases. Various salts alter the surface pressure of the Langmuir monolayer isotherms without the alteration of monolayer phase transitions. The finding of the present work can be effectively used for development of suitable biomedical formulations to offer sufficient strength of coating film with controlled topology and thickness using Langmuir-Blodgett film deposition technique. Addition of the suitable biocompatible ions in to the sub-phase is very crucial for their favourable interfacial interaction with the lipid molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

C. Carrera Sánchez, M. Cejudo Fernández, M. Rosario Rodríguez Niño, J. M. Rodríguez Patino, Langmuir, 22, 4215 (2006). https://doi.org/10.1021/la053506.

A. Chakraborty, A. Hertel, H. Ditmars, P. Dhar, Mol., 25 (2020). https://doi.org/10.3390/molecules25030714. PMid: 32046011 PMCid:PMC7037128.

T.E. Goto, C.C. Lopes, H.B. Nader, A.C.A. Silva, N.O. Dantas, J.R.J. Siqueira, L. Caseli, Biochim. Biophys. Acta., 1858, 1533 (2016). https://doi.org/10.1016/j. bbamem.2016.04.009. PMid:27107554.

T. Miyoshi, S. Kato, , Langmuir, 31, 9086 (2015). https://doi.org/10.1021/acs.langmuir.5b01775. PMid:26255826.

S. Gallier, D. Gragson, R. Jiménez-Flores, D.W. Everett, Int. Dairy J., 22, 58 (2012). https://doi.org/10.1016/j.idairyj.2011.08.007.

S.S. Ali, X. Tang, S. Alavi, J. Faubion, J. Agric. Food Chem., 59, 12384 (2011). https://doi.org/10.1021/jf201119v. PMid:21932797.

M. Elderdfi, A.F. Sikorski, Chem. Phys. Lipids, 212, 61 (2018). https://doi.org/10.1016/j.chemphyslip. 2018.01.008. PMid:29360431.

B. Dhopte, V.N. Lad, Colloids Surfaces B Biointerfaces, 187, 110638 (2020). https://doi.org/10.1016/j.colsurfb. 2019.110638. PMid:31767413.

J. young Park, R. Advincula, Soft Matter, 7, 9829 (2011). https://doi.org/10.1039/c1sm05750b.

Y. D. Livney, Curr. Opin. Colloid Interface Sci., 15, 73 (2010). https://doi.org/10.1016/j.cocis.2009.11.002.

G. Thakur, M. Micic, R. M. Leblanc, Colloids Surf. B. Biointerfaces, 74, 436 (2009). https://doi.org/10.1016/j. colsurfb.2009.07.043. PMid:19726167.

J. M. Rodríguez Patino, M. C. Fernández, Langmuir, 20, 4515 (2004). https://doi.org/10.1021/la036190j. PMid:15969160.

M. Rojewska, M. Skrzypiec, K. Prochaska, Colloids Surf. B. Biointerfaces, 150, 334 (2017). https://doi.org/10.1016/j.colsurfb.2016.10.047. PMid:27842934.

A. S. Chumakov, A. V. Ermakov, I. A. Gorbachev, E. L. Kossovich, A. A. Kletsov, E. G. Glukhovskoy, The Influence of Redistribution Ions in Subphase at the Properties Langmuir Monolayer: Physical and Theoretical Experiments. In: Proc. SPIE; 2016. https://doi.org/10.1117/12.2228787.

R. Kensbock, H. Ahrens, C. A. Helm, Langmuir, 35, 3624 (2019). https://doi.org/10.1021/acs.langmuir.8b03637. PMid:30732452.

J. A. O’Mahony, P. F. Fox, Milk Proteins, 19 (2014). https://doi.org/10.1016/B978-0-12-405171-3.00002-7.

E. Dickinson, D. J. McClements, Springer Science and Business Media, (1995). https://doi.org/10.1007/978-1- 4613-1223-9.

N. J. Krog, F. V. Sparso, Food Emulsifiers and their Chemical and Physical Properties, Marcel Dekker Inc., New York, USA; 2004.

M. Rosario Rodríguez Niño, P. J. Wilde, D. C. Clark, J. M. Rodríguez Patino, Ind. & Eng. Chem. Res., 35, 4449 (196). https://doi.org/10.1021/ie960333y.

M. Ahlers, R. Blankenburg, H. Haas, D. Möbius, H. Möhwald, W. Müller, H. Ringsdorf, H. Siegmund, Adv. Mater, 3, 39 (1991). https://doi.org/10.1002/ adma.19910030108.

J. de la Fuente Feria, J. M. Rodriguez Patino, Langmuir, 10, 2317 (2002). https://doi.org/10.1021/la00019a049.

D. Lee, O. Redfern, C. Orengo, Mol. Cell Biol., 8, 995 (2007). https://doi.org/10.1038/nrm2281. PMid:18037900.

R. P. Giri, M. K. Mukhopadhyay, M. Mitra, A. Chakrabarti, M. K. Sanyal, S. K. Ghosh, S. Bera, L. B. Lurio, Y. Ma, S. K. Sinha, Europhysics Lett., 118, 58002 (2017). https://doi.org/10.1209/0295-5075/118/58002.

R. Giri P., A. Chakrabarti, M. K. Mukhopadhyay, J. Phys. Chem. B, 121, 4081 (2017). https://doi.org/10.1021/acs. jpcb.6b12587. PMid:28383262.

T.-B. Juan, R. Rekha, Adv. Mater. Sci., 4, 1 (2019). https://doi.org/10.15761/AMS.1000149.

M. J. Hostetler, S. J. Green, J. J. Stokes, R. W. Murray, J. Am. Chem. Soc., 118, 4212 (1996). https://doi.org/10.1021/ja960198g.

L. Zhang, Q. Lu, M. Liu, J. Phys. Chem. B, 107, 2565 (2003). https://doi.org/10.1021/jp026621r.

B. Piknova, V. Schram, S. B. Hall, Curr. Opin. Struct. Biol., 12, 487 (2002). https://doi.org/10.1016/S0959- 440X(02)00352-4.

C. V Kulkarni, W. Wachter, G. Iglesias-Salto, S. Engelskirchen, S. Ahualli, Phys. Chem. Chem. Phys., 13, 3004 (2011). https://doi.org/10.1039/C0CP01539C. PMid:21183976.

L. Ariza-Carmona, M. T. Martín-Romero, J. J. Giner- Casares, M. Pérez-Morales, L. Camacho, J. Phys. Chem. C, 117, 21838 (2013). https://doi.org/10.1021/ jp406397q.

E. Lopez-Rodriguez, J. Pérez-Gil, Biochim. Biophys. Acta - Biomembr., 1838, 1568 (2014). https://doi.org/10.1016/j.bbamem.2014.01.028. PMid:24525076.

M. Jurak, J. Miñones, Biochim. Biophys. Acta - Biomembr., 1858, 1821 (2016). https://doi.org/10.1016/j. bbamem.2016.04.012. PMid:27117642.

I. Ahmed, L. Dildar, A. Haque, P. Patra, M. Mukhopadhyay, S. Hazra, M. Kulkarni, S. Thomas, J. R. Plaisier, S. B. Dutta, J. K. Bal, J. Colloid Interface Sci., 514, 433 (2018). https://doi.org/10.1016/j.jcis.2017.12.037. PMid:29278799.

D. M. Taylor, G. F. Bayes, Mater. Sci. Eng. C. C, 65 (1999). https://doi.org/10.1016/S0928-4931(99)00064-8.

H. J. Trurnit, J. Colloid Sci. 15, 1 (1960). https://doi.org/10.1016/0095-8522(60)90002-7.

R. S. Phadke, G. Agarwal, Mater. Sci. Eng. C. C, 113 (1999). https://doi.org/10.1016/S0928-4931(99)00082-X.

M. A. Borden, G. Pu, G. J. Runner, M. L. Longo, Colloids Surfaces B Biointerfaces, 35, 209 (2004). https://doi.org/10.1016/j.colsurfb.2004.03.007. PMid:15261034.

M. R. Rodríguez Niño, P. J. Wilde, D. C. Clark, J. M. Rodríguez Patino, Ind. Eng. Chem. Res., 35, 4449 (1996). https://doi.org/10.1021/ie960333y.

C. C. Sánchez, M. C. Fernández, M. R. Rodríguez Niño, J. M. Rodríguez Patino, Langmuir, 22, 4215 (2006). https://doi.org/10.1021/la053506.

S. F. Sun, Physical Chemistry of Macromolecules- Basic Principles and Issues, 2006. https://doi.org/10.1080/10426910500503722.

S. L. Duncan, R. G. Larson, Biophys. J., 94, 2965 (2008). https://doi.org/10.1529/biophysj.107.114215. PMid:18199666 PMCid:PMC2275714.

D. Taurait?, V. Razumas, T. Nylander, E. Butkus, Zeitschrift Für Naturforsch. B, 63, 1093 (2008). https://doi.org/10.1515/znb-2008-0913.

D. E. Valencia-Rivera, A. Básaca-Loya, M. G. Burboa, L. E. Gutiérrez-Millán, R. D. Cadena-Nava, J. Ruiz- García, M. A. Valdez, J. Colloid Interface Sci., 316, 238 (2007). https://doi.org/10.1016/j.jcis.2007.07.079. PMid:17897666.

T. Reda, H. Hermel, H.-D. Höltje, Langmuir, 12, 6452 (1996). https://doi.org/10.1021/la960161. PMid:32422596.

L. Zhang, C. Hao, G. Xu, R. Sun, Scanning, 2017, 9 (2017). https://doi.org/10.1155/2017/1542156. PMid:29250212 PMCid:PMC5698604.

J. M. Rodriguez Patino, M. Cejudo Fernandez, C. Carrera Sanchez, M. R. Rodriguez Nino, J. Colloid Interface Sci., 313, 141 (2007). https://doi.org/10.1016/j. jcis.2007.04.025. PMid:17509606.

A. A. Gurtovenko, I. Vattulainen, J. Phys. Chem. B, 112, 4629 (2008). https://doi.org/10.1021/jp8001993. PMid:18363402.

J. M. Rodríguez Patino, M. R. Rodríguez Niño, C. Carrera Sánchez, J. Agric. Food Chem., 51, 112 (2003). https://doi.org/10.1021/jf020197.

D. Marsh, Chem. Phys. Lipids, 57, 109 (1991). https://doi.org/10.1016/0009-3084(91)90071-I.

M. A. Bos, T. Nylander, Langmuir, 12, 2791 (1996). https://doi.org/10.1021/la950640t.

E. Mantil, I. Buznytska, G. Daly, A. Ianoul, T. J. Avis, J. Membr. Biol., 252, 627 (2019). https://doi.org/10.1007/s00232-019-00100-6. PMid:31612244.

A. P. Minton, Anal. Biochem., 501, 4 (2016). https://doi.org/10.1016/j.ab.2016.02.007. PMid:26896682 PMCid: PMC5804501.

S. Nayak, M. Fieg, W. Wang, W. Bu, S. Mallapragada, D. Vaknin, Langmuir, 35, 2251 (2019). https://doi.org/10.1021/acs.langmuir.8b03535. PMid:30628793.

A. Honigmann, G. van den Bogaart, E. Iraheta, H. J. Risselada, D. Milovanovic, V. Mueller, S. Müllar et al., Nat. Struct. & Mol. Biol., 20, 679 (2013). https://doi.org/10.1038/nsmb.2570. PMid:23665582 PMCid:PMC3676452.

R. Ettelaie, A. Akinshina, Food Hydrocoll., 42, 106 (2014). https://doi.org/10.1016/j.foodhyd.2014.01.020.

J. Torrent-Burgués, P. Cea, I. Giner, E. Guaus, Thin Solid Films, 556, 485 (2014). https://doi.org/10.1016/j.tsf.2014.01.045.

J. T. Davies, Interfacial Phenomena, Elsevier; 2012.

R. Maget-Dana, Biochim. Biophys. Acta., 1462, 109 (1999). https://doi.org/10.1016/S0005-2736(99)00203-5.

E. Jab?onowska, E. Nazaruk, D. Matyszewska, C. Speziale, R. Mezzenga et al., 32, 9640 (2016). https://doi.org/10.1021/acs.langmuir.6b01746. PMid:27550742.

B. Caruso, E. E. Ambroggio, N. Wilke, G. D. Fidelio, Colloids Surfaces B Biointerfaces, 146, 180 (2016). https://doi.org/10.1016/j.colsurfb.2016.06.003. PMid:27318963.

M. J. Sánchez-Martín, I. Haro, M. A. Alsina, M. A. Busquets, M. Pujol, J. Phys. Chem. B, 114, 448 (2010). https://doi.org/10.1021/jp906900k. PMid:20000622.

J. M. Rodriguez Patino, M. R. Rodriguez Nino, C. Carrera Sanchez, M. Cejudo Fernandez, J. Colloid Interface Sci., 240, 113 (2001). https://doi.org/10.1006/jcis.2001.7567. PMid:11446793.

R. E. Brown, H. L. Brockman, Methods Mol. Biol., 398, 41 (2007). https://doi.org/10.1007/978-1-59745-513- 8_5. PMid:18214373 PMCid:PMC2612596.

X. Zhai, X. -M. Li, M. M. Momsen, H. L. Brockman, R. E. Brown, Biophys. J., 91, 2490 (2006). https://doi.org/10.1529/biophysj.106.084921. PMid:16829567 PMCid:PMC1562372.

J. de la Feria, J. M. Rodriguez Patino, Langmuir, 11, 2090 (2002). https://doi.org/10.1021/la00006a041.

Published

2022-05-12

How to Cite

Dhopte, B. S., & Lad, V. N. (2022). Interfacial Interactions of Monoolein Langmuir Monolayers with Aqueous Salt Solutions. Journal of Surface Science and Technology, 37(1-2), 105–115. https://doi.org/10.18311/jsst/2021/28882

Issue

Section

Articles