
Encapsulation of Micro Engineering
Tools in a Co-operative Jyaguchi Computing

Infrastructure
Bishnu Prasad Gautam1, 2*, Katsumi Wasaki2 and Amit Batajoo1

1Faculty of Integrated Media, Department of Integrated Media, Wakkanai Hokusei Gakuen University, Wakkanai,
Hokkaido, Japan; gautam@wakhok.ac.jp, amit@wakhok.ac.jp

2Interdisciplinary Graduate School of Science and Technology, Shinshu University 4-17-1 Wakasato Nagano-city,
Nagano, Japan; wasaki@cs.shinshu-u.ac.jp

Abstract
Micro engineering tools and services face many issues and limitations in terms of modularity, and usability with regards to
their availability and scalability. Scalability may suffer due to the limitation of service granularity as service objects some-
times may require to deliver in low bandwidth network infrastructures. Jyaguchi platform supports highly dynamic and
interactive service development process by which developers can design services as per their requirement functionalities
which can be micro, macro or mega services. In this paper we discuss particularly about the development process of micro
services. The qualities of a micro-service are not limited to its performance metric, but are designed to maintain simplic-
ity and may even consist of fully-functional and loosely coupled applications. These services can be utilized enabling a
higher level of usability. Usability is maintained by reducing the granularity and complexity of functionalities of a service.
However, Jyaguchi services have potential to increase its granularity without breaking its underlying architecture. The ser-
vice oriented architecture of Jyaguchi platforms also allow for these services to dynamically deliver to the remote clients
and still keep the persistent state until the client terminate the service. We also realize that micro engineering services
that are distributed locally or globally should be categorized during the design phase. These services should be allowed
to change its granularity in demand-respond manner based on micro, macro and mega service model instead of keeping
those services static. A working model of Jyaguchi platform that can deliver these kinds of services is also discussed in this
paper which incorporates all these aspects.

Keywords: Micro Service Engineering, Jyaguchi Cloud, Service Management, Service Modularization

*Author for correspondence

1. Introduction
Jyaguchi is a platform at which java based application can
be built and exported to the client over a network. This
very means of exporting java application over a network
is supported by the underlying middleware technologies
such as RMI and Jini [1], [2]. Originally developed [3],
[4] during his bachelor and upgraded in master degree,
Jyaguchi is evolving and improving thereafter too [5],
[6], [7]. Initially, the concept of Jyaguchi was brought to

 demonstrate how this can be exported to the client as a
 service. The software delivery concept was termed Jyaguchi
service which literally means a tap in Japanese language.
As tap can regulate the intensity or rate of flow of water,
accordingly the philosophy of Jyaguchi is that user should
be able to consume the service and can regulate the fre-
quency of usage and duration of usage etc. This very nature
of tap which have opening and closing valve to regulate the
rate of water flow was incorporated to the philosophy of
Jyaguchi architecture. Jyaguchi architecture facilitates the

ScieXplore: International Journal of Research in Science, Vol 1(1), 34–41, January–June 2014
ISSN (Print): 2349–8919

ISSN (Online): 2350–0999

DOI: 10.15613/sijrs/2014/v1i1/53851

Bishnu Prasad Gautam, Katsumi Wasaki and Amit Batajoo

ScieXplore: International Journal of Research in Science 35Vol 1 (1) | January–June 2014 |

user or service consumer to consume the service as per
use basis. Furthermore, Jyaguchi was developed on the
concept of leasing an entire service item or application
from a service provider rather than owning that software
completely either by installing and licensing of software.
From the novice user point of view, software installation,
managing of its license, updating and upgrading of that
software is a critical issue. However, providing those fea-
tures as implemented in Jyaguchi reduce these kinds of
management cost of the users. This sort of concept is also
incorporated in SaaS based application. Jyaguchi is not
only a SaaS based platform but also an architectural model
that can be enhanced to model, develop and export next
generation cloud based services. It utilizes the hybrid
architectural model consisting of SOA (Service Oriented
Architecture) and SPA (Space Based Architecture) [3], [4].

This research utilizes the Jyaguchi platform, on the
top of which we built some micro-engineering tools that
can be exported over networks. In academic fronts, the
 significance of micro-engineering tools is very demand-
ing. In developing worlds, schools, colleges or Universities
cannot afford the devices that can solve or executed the
scientific problems.

This research paper reports the first phase of develop-
ment of micro-engineering tools based on Jyaguchi
service platform, with a particular emphasis on how
its service discovery model was implemented. Service
 discovery model for micro-services aligns generally with
the principles of ease of development, ease of deploy, ease
of seek and ease of use. The paper details the ways in which
the service development, its wrapping methodology,
 deployment and the performance metrics of Jyaguchi ser-
vices. It concludes with a discussion of the transition from
micro- engineering tools to the macro and mega services
architecture and the performance evaluation of Jyaguchi
mini service in REST and Jyaguchi platform.

2. Motivation and Issues
Micro engineering computing tools in computer science
and engineering fields are in high demand. There is a
large set of micro engineering tools ranging from simple
calculation to complex calculation in the field of com-
puter science or engineering. In this research we refer
to those tools by which we can compute some mathe-
matical problems, solve equations and plot them to the
graph. Some tools even can be used to plan the network,
simulate it and evaluate the performance. These tools are

often provided in the market by embedding in specifically
designed dedicated device. The typical example of
such device is scientific calculator. There are lots of
other examples such as electronic thermometers, pH
gauges, weather instruments, decibel and light meters,
 accelerometers, sensors etc. From economic point of
view, Universities and Colleges have a financial constraint
to provide those tools to every student in engineering
labs. In order to address such kind of financial constraint,
we purpose a service development model by which such
services can be provided in very cost effective manner. In
this research we are trying to provide a Jyaguchi platform
in which most of those micro engineering tools can be
provided by encapsulating the software objects.

Jyaguchi micro-services model related to encapsulate
micro-engineering tools was developed in order to
re-conceptualize Jyaguchi cloud services as a set of fede-
rated computing services, developed and deployed in a
 decentralized manner, rather than as a centralized, mono-
lithic manner. Though Jyaguchi provides those fede rated
services in a monolithic service viewing browser named
Universal Browser [4], the development model is not
monolithic. The advantages of such an approach are that
individual services are easier to maintain than the same
service embedded within a larger repository framework,
as well as being easier to develop, deploy and publish in
the registries of Jyaguchi cloud services.

3. Service Development Process
and its Architecture

We agree that Jyaguchi platform supports the develop-
ment of distributed object. The main requirement of
distributed object is its ability to create, invoke and deliver
the objects in a remote host while providing the environ-
ment as if they were invoked in local infrastructure. These
sorts of remote object invocation have been implemented
in COM, COBRA and RMI and many other technologies
until few years ago. Jyaguchi employs a similar kind of
concept that invokes the total bundle of service executed
in remote server. We named this invocation model as RSI.
The underlying protocol to call the remote service is JERI
and JRMP [8], [9]. Recently, a different type of invocation
model is often utilized in web service technology such as
WSIF [10]. Web service technologies has passed different
stages of evolution phases in terms of utilizing underly-
ing message passing protocols such as SOAP and REST.
These technologies, must of the time, utilize XML data

Encapsulation of Micro Engineering Tools in a Co-operative Jyaguchi Computing Infrastructure

ScieXplore: International Journal of Research in ScienceVol 1 (1) | January–June 2014 |36

format to send and receive the message. Messages can
also be passed in JSON format too. However service call
in web service technology and Jyaguchi is different. Most
of the web service related technologies utilizes message
passing technique whereas Jyaguchi utilizes RSI at which
parameters are passed as the reference of java object. We
did not utilize message passing rather we utilized service
calling approach in order to reduce the overhead occurs
in message passing. In message passing, it has to copy the
existing arguments and append it to the new portion of
the message resulting to a large size of message. In our
approach, we used remote service invocation at which
service with a unique and distinct identity, can encap-
sulate internal state and threads of execution, and that
exhibits a well-defined visible behavior. Particularly, these
services are coded as java objects and are wrapped with
Jyaguchi service and the whole service is remarshaled in
the user device. In the following sections, we describe the
total scenarios of Jyaguchi infrastructure, service wrap-
ping scenarios and the concept of service granularity.

3.1 Co-operative Computing Infrastructure
Distributed application varies in granularity and infra-
structure. Traditionally, distributed applications were
two-tiered, three-tiered or multi-tiered in their architec-
ture which collectively makes a single system. This notion
of single system has evolved to the creation of from tire
based system to a more huge virtualized system such as
grid system [11], [12]. We experienced that the emergence
of cloud computing as a new platform for enterprise. From
its very inception, Jyaguchi service development model
utilizes the legacy computing infrastructure thereby cre-
ating a cluster of possible hardware that can participate
in the federations of Jyaguchi services. The hardware and
services that participate in Jyaguchi services are capable
of addressing the problem in a co-operative manner. The
notion of co-operation has been executed by utilizing
the concept of SOA in which the underlying computing
 infrastructure or underlying middleware are encapsulated
and the detailed of which are not required while provid-
ing the services to the end user. In fact Jyaguchi services
can be built in a number of multiple technologies and
protocols [13], [14]. Though there are the different archi-
tectures underlying, Jyaguchi service models can produce
similar characteristics of web service and can be used
together with other web service like technologies too. This
ability is referred to as co-operative computing infrastruc-
ture. Figure 1 shows the relation between each device and

the underlying software components that co-operate while
developing, deploying and using of Jyaguchi service. In
particular usage scenario, Jyaguchi client send request to
the lookup server, this server provides the proxy required
to the client and with the help of this proxy, client will be
able to interact and can download the remaining codes
from web server. In this way, a solution is achieved. In order
to scale out the co-operative infrastructure, the underlying
hardware federation can be increased by virtualization.

We are also exploring the ways to build the services
by using encapsulation service modularization approach.
We have developed complete package of middleware by
integrating different kinds of underlying technologies.

3.2 Service Wrapping
In our test case, we developed numbers of dummy services
in Java programming language in order to confirm
whether the wrapper actually can work in a new environ-
ment or not. Though the architecture of Jyaguchi does not
dictate or advocate any particular language, we choose
this language as we have already implemented numbers
of functionalities in Java. In our previous works, we had
developed few services such as scientific calculator, Java
Editor, Chat and Presentation Tool. These solutions are
required to be wrapped by our Jyaguchi wrapper so that
these objects can be published in the service registry.
Figure 2 shows that each java objects are wrapped with
Jyaguchi in order to publish in the Jyaguchi server.

Figure 1. Co-operative computing infrastructure.

Figure 2. Jyaguchi Wrapper.

Bishnu Prasad Gautam, Katsumi Wasaki and Amit Batajoo

ScieXplore: International Journal of Research in Science 37Vol 1 (1) | January–June 2014 |

3.3 Service-client Federation
Jyaguchi platform provides services in the manner of
service client federations. Figures 3 and 4 specify how
Jyaguchi client can utilize Jyaguchi service in a network.
In order to consume the service, service provider must
publish his service in a network. Generally, this Jyaguchi
service is published in lookup server. If the client wants to
utilize this service, he or she must have the account. User
accounts and other service status information are stored
in database. While client decides to utilize the service,
he or she must login into his account. Published services
in service registries can be browsed by using universal
 service browser provided by Jyaguchi development pack-
age. In order to consume the service, user needs to pass
the authentication process. After successful authentica-
tion, he or she can utilize the service by simply clicking
the icons displayed in the browser. In order to complete
this process, service and client have an interaction for
number of times.

4. Modularization and
Encapsulation of Services

Modern ICT companies and organization are facing
number of problems while they want to respond to rapid
market demands. In order to respond to the rapidly
changing market, organization often tries to participate
and collaborate with inter-organizational networks and
solutions. By participating into inter-organizational net-
works, they are able to provide new kind of services and
solutions but face a number of challenges. These chal-
lenges occur due to sheer size and inter-mixed solution
which has no proper documentation to further scale up.
In order to solve such complexity, the modularization
approach has gained lots of attention from the researcher
these days. In the past decade, we witnessed that most of
the ICT solutions are architected in SOA [15], [16], [17]
principle. As SOA makes it possible to encapsulate under-
lying business process, it has been widely applied in
business applications architecture. Furthermore, it also
makes possible to introduce newer concept of ICT enter-
prises such as service bus, service composition, and service
virtualization. In order to retain the qualities of SOA, it is
inevitable to encapsulate the complex functionalities into
a separate bundle of the software. The process of separat-
ing the functionalities from different features of remaining
functionalities is called modularization. We got back into

Figure 3. Scenario between Jyaguchi Service and Jyaguchi
Client.

Jyaguchi research after a few gap of times in order to make
service modularization more explicit.

This paper provides insights into the concept of service
encapsulation as a process of modularization. To define
more properly, service modularization is the act of provi-
ding a solution as a module creation. When the service
modularization can be started by encapsulating the func-
tionalities into number of different modules, then it is also

Figure 4. Activity diagram of Jyaguchi Service and Client.

Encapsulation of Micro Engineering Tools in a Co-operative Jyaguchi Computing Infrastructure

ScieXplore: International Journal of Research in ScienceVol 1 (1) | January–June 2014 |38

equally important to modify non-modularized services to
modularized ones that can leverage entire encapsulation
process. So how do we encapsulate the non-modularized
process into a single module?

First, we sought to categorize the existing services of
Jyaguchi and decompose into finer grain. In order to pro-
vide basic and simple mathematic calculation, we tried to
implement a single method for a single functionality. Such
kind of simple function is wrapped by Jyaguchi wrapper.
This is the core feature required in SOA based modular-
ization. In enterprise, IT assets have to be wrapped and
provide interface to access these assets. These assets can
be ranged from a simple program or a simple hardware
to a large piece of software and hardware. In this paper,
we limit our modularization just to a software service.
Jyaguchi services also ranged from very simple program
to large piece of software. As the granularity of this ser-
vice is small, we name it micro service our modules at this
stage completely based on software systems only and we
have not included humans in the modularization process.
We introduce about these modules in the subsections
below (Refer subsection 4.1, 4.2 and 4.3).

The concept of modularization is to separate the con-
cern and context from once piece of program to other so
as to minimize the effect that changes in one module may
have on other modules. Separating the unrelated concerns
from the modules has a great advantage of reducing inter-
dependencies of modules so as to minimize the coupling
between the server and client program. While there is a
maximum coupling between server and client program, a
small change in server program needs to be informed to
the user. While this sort of software cohesion and coupling
issues can be addressed in service modularization [18], [19].
In the following subsections, we describe our guideline
indicator about the notion of services and we categorized
the services into 3 different sub-groups.

4.1 Mini Service
Mini services in Jyaguchi are the service which can be
downloaded over a network and these services can be
exported as a complete software package. To utilize this
service, Jyaguchi client even does not require knowing
about the interface. However Jyaguchi client must possess
universal browser, where we have implemented universal
interface that can be used to call any Jyaguchi mini ser-
vice. These services are implemented for the users who
have low internet bandwidth.

4.2 Macro Service
Macro services are the services which can either be down-
loaded or can be accessed via web browser. As the size of
service becomes larger than micro service, we categorized
these kinds of services to macro service and put option to
the client to choose whether he or she wants to download
entire service or can accessed by using web browser as like
other web services.

4.3 Mega Service
Mega services in Jyaguchi are those services which granu-
lairty is extremely larger than macro services and are not
feasible to serialze as a comlete software that can be done
for micro and mega services. Option is also omiitted and
client can only use this kind of service as like web services
by using web browser.

5. Evalaution of Modules
In this section, we describe about evaluation of mod-
ules that we created during our research. In our previous
 studies [3], [4], [6], we have implemented Jyaguchi Editor,
Jyaguchi Calculator, Jyaguchi Presentation and few other
modules. These modules are continuously upgraded
and we have added new functionalities too. During this
research, we presented new notion of modularization into
the previously developed services. In order to simplify our
explanation in this paper, we would like to report our result
of Pi value calculation. This function was modularized in
the application of Jyaguchi Calculator. We implemented
this service in two different platforms: REST [20] and
Jyaguchi.

5.1 REST vs. Jyaguchi Service
Figures 5 and 6 are the detailed benchmarked result of
Pi calculation observed in REST and Jyaguchi platform.
Figure 5 a), b) and c) were taken while this service was
executing by using REST, whereas Figure 6 a), b) and c)
were taken for Jyaguchi platform. Our result showed that
garbage collection in Jyaguchi is far effective than in REST
platforms. For the rest of performance evaluation we dis-
cuss in the next section.

5.1.1. Analysis and Discussion
Figure 5 a) and Figure 6 a) show the consumption size of
heap after executing 1000 loops for pi value calculation.

Bishnu Prasad Gautam, Katsumi Wasaki and Amit Batajoo

ScieXplore: International Journal of Research in Science 39Vol 1 (1) | January–June 2014 |

The value was resulted with 50 decimal points. The
 calculated value (3.14059265383979292596359650286939
5970451389330779 84) was same in the both platform of
REST and Jyaguchi. As you can see, there are different graph
between REST and Jyaguchi. Initially, the size of heap con-
sumed in REST is small and it is in increasing trend because
in REST platform, initially, HTTP request is sent to the
server and there is no much heap consumption, however
after receiving the response from the server, the client side
need to re-serialize the obtained message. Though REST
supports both XML and JSONObject, in our experiment,
we used JSONObject. From above graph we can see that
garbage collection need to wait pretty long until the object
is re-serialized in REST. Instead, in Jyaguchi this happened
relative quickly (See Figure 6 a) and Figure 6 b). The rest
of figures are self-descriptive and we do not find much dif-
ference. However, in our observation, REST will take more
memory and more time to re-serialize data if the size of
message is increased. The benefit of REST is it does not dic-
tate client to use JAVA or any specific environment except
simple browser, where Jyaguchi requires java environment
for current implementation.

6. Future Works
Jyaguchi is continuously evolving research project. The
author [3], [4] started this project in 2002 and have
upgraded and utilized by numbers of peoples [6], [7].
Recently, we began to implement micro-engineering
tools and tested whether we can utilize those tools in the
LAN without having diffi culties. We did not have much
difficulty to implement Jyaguchi services particularly the
micro-engineering services and expose them via look up
service for end users. We believe that end users will have
no problem to utilize micro-engineering Jyaguchi tools in
their environment. However, we realized that we need to
do sufficient works to implement mega service that can be
utilized by Jyaguchi client.

In this paper, we have presented a very simplified
model that explains how to integrate heterogeneous
environ ments as a co-operative computing infrastructure.
These co-operations may include interaction between
backend servers that may use relational database server,
NoSQL, service registry, web server, legacy server and
many other computing resources. We have illustrated the
model in the context of simple mathematic calculation
example. We have also shown how to develop, deploy and
use Jyaguchi services.

Figure 5. a) Heap consumption in REST b) Garbage
collections status in REST c) Loaded class and threads in
REST

Figure 6. a) Heap Consumption in Jyaguchi b) Garbage
Collections Status in Jyaguchi c) Garbage Collections Status
in Jyaguchi

Encapsulation of Micro Engineering Tools in a Co-operative Jyaguchi Computing Infrastructure

ScieXplore: International Journal of Research in ScienceVol 1 (1) | January–June 2014 |40

While evaluating our numbers of micro-services, we
identified a number of issues for further research. For
instance, we have to limit the size of service and identify
what sort of service suit to utilize the services provided by
this system. Furthermore, we have to provide a framework
by which development of each set of micro, macro and
mega services can be plugged in our system smoothly. We
also would like to develop a workload partitioning or bal-
ancing packages with more precise partitioning function.
We would like to deploy these services in the networks of
Himalayan regions [21], [22] that the authors have con-
structed in their other research projects. Also, we need a
full-fledged server side administration package to prop-
erly manage our deployed services.

7. Conclusion
In this paper we highlighted about our lab experiment
regarding the advantages of using Jyaguchi platform
while you export encapsulated engineering tools or ser-
vices. We argued that in Jyaguchi, Java programming
language is playing very important role to create dynamic
networking computing system and a distributed service-
oriented programming model that forms a strong base
for cloud services. We presented an overview of Jyaguchi
system that aims to demonstrate the benefits of service
encapsulation. We also calculated pi value and compared
the performance between Jyaguchi and REST based infra-
structure. Our result showed the mixed result however,
the memory usage in Jyaguchi platform is more stable
and effective. Furthermore, we defined the granularities
of Jyaguchi services in terms of Micro, Macro and Mega
services.

8. Acknowledgement
The authors would like to thank the entire family of
Wakkanai Hokusei Gakuen University and Shinshu
University for their support.

9. References
 1. Oracle Documentation about Java RMI tutorial. Available:

http://docs.oracle.com/javase/tutorial/rmi/overview.html
 2. Wollrath A., Riggs R., and Waldo J., “Sun Microsystems, Inc,

A Distributed Object Model for the Java System”. Available:
http://pdos.csail.mit.edu/6.824-2009/papers/waldo-rmi.
pdf Date Accessed: 2014/05/25

 3. Gautam B. P., “An architectural model for time based
resource utilization and optimized, [Master Thesis], Shinshu
University, 2009.

 4. Gautam B. P., and Shrestha D., “A model for the
 development of universal browser for proper utilization of
 computer resources available in service cloud over secured
 environment”, IAENG 2010, Available: http://www.iaeng.
org/publication/IMECS2010/IMECS2010_pp638-643.pdf

 5. Kleinberg J., “Complex networks and decentralized search
algorithms”. Available: http://www.cs.cornell.edu/home/
kleinber/icm06-swn.pdf

 6. Shrestha S. K., Kudo Y., Gautam B. P., and Shrestha D.,
“Multidimensional service weight sequence mining based
on cloud service utilization in Jyaguchi”, Available: http://
www.iaeng.org/publication/IMECS2013/IMECS2013_
pp301-306.pdf

 7. Shrestha S. K., Kudo Y., Gautam B. P., and Shrestha D.,
“Recommendation of a cloud service item based on service
utilization patterns in Jyaguchi”, Proc of KSE2013, vol. 2,
pp. 121–133

 8. Newmarch J., “Foundations of Jini 2 programming”.
Available: http://jan.newmarch.name/java/jini/tutorial/Jeri.
html#Jeri

 9. Apache River Project. Available: http://river.apache.org/
doc/specs/html/lookup-spec.html

10. Gautam B. P., Sharma N., and Wasaki K., “Using a solar
powered robotic vehicle to monitor and manage unstable
networks”, ICFN 2014.

11. Gautam B. P., Sharma N., Shrestha S., and Gautam R.,
“Monitoring and management of unstable network through
solar powered robotic vehicle”, WAKHOK University
Bulletin, vol. 14, pp. 19–30, Mar. 2014.

12. Tuecke S., Czajkowski K., Foster I., Frey J., Graham S.,
Kesselman C., Maquire T., Sandholm T., Snelling D., and
Vanderbilt P., “Open grid services infrastructure”, Available:
http://toolkit.globus.org/toolkit/draft-ggf-ogsi-gridservice-
33_2003-06-27.pdf

13. Chen M. X., Sung F., and Lin B. Y., “Service discover proto-
col for network mobility environment”, ICIC International
Journal 2012, Available: http://www.ijicic.org/ijicic-11-
05025.pdf

14. Perianu R. M., Hartel P., and Scholten H., “A classification of
service discovery protocols”. Available: http://doc.utwente.
nl/54527/1/classification_of_service.pdf

15. van der Aalst W. M. P., Beisiegel M., van Hee K. M.,
KÖnig D., and Stahl C., “A SOA-based architecture frame-
work”, Available: http://www.win.tue.nl/~cstahl/Papers/
AalstBHKS2007_csrep.pdf

16. Service Oriented Architecture (SOA) and Specialized
Messaging Patterns, Technical White Paper, Available:
http://www.adobe.com/enterprise/pdfs/Ser vices_
Oriented_Architecture_ from_Adobe.pdf

Bishnu Prasad Gautam, Katsumi Wasaki and Amit Batajoo

ScieXplore: International Journal of Research in Science 41Vol 1 (1) | January–June 2014 |

17. Sahin K., and Gumusay M. U., “Service Oriented Architecture
(Soa) based web services for geographic information sys-
tems”. Available: http://www.isprs.org/ proceedings/XXXVII/
congress/2_pdf/5_WG-II-5/03.pdf

18. Terlouw L., “Modularization and specification of service-
oriented systems”, Ph.D Thesis, 2011.

19. Brax S. A., and Toivonen M., “Modularization in business
service innovations”, Available: www.imi.tkk.fi/ publications/
download/207/

20. Fielding R. T., “Representational State Transfer (REST)”, Ph.D
Thesis, 2000, Available: http://www.ics.uci.edu/~fielding/
pubs/dissertation/rest_arch_style.htm

21. Paudel D. R., Kazuhiko S., Gautam B. P., and Shrestha D.,
“Design and implementation of partial mesh community
wireless network in himalayan region”, Proceedings of
Third Asian Himalayas Internationl Conference on Internet
AH-ICI2012, 2012/11, Kathmandu, Nepal.

22. Gautam B. P., Paudel D. R., and Shrestha K., “A study and site
survey in himalayan region for proper utilization of wireless
community networks: an assessment of community wireless
implementation in heterogeneous topography”, WAKHOK
Journal, vol. 11 Japan Disaster Statistics, Natural Disasters from
1980–2010, International Disaster Database. Available: http://
www.preventionweb.net/english/countries/ statistics/?cid=87

