Potential Protective Role of Curcumin on the Toxic Effect of Food Azo Dye Tartrazine on the Brain of Young Albino Rats


Affiliations

  • Zagazig University, Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig, Egypt
  • Zagazig University, Department of Histology and Cell Biology, Faculty of Medicine, Zagazig, Egypt

Abstract

The use of coloring agents in food industry has dramatically increased. Children are the main consumers of colored food products and beverages and are more vulnerable to the effects of synthetic colorants. Curcumin, an active constituent of turmeric plant, has been the subject of extensive studies assessing its antioxidant properties. The present study was conducted to evaluate the protective potentials of curcumin against neurotoxicity induced by the synthetic food colorant; tartrazine. Thirty-six young male albino rats were divided into six groups; negative control (Group I), distilled water (Group II), corn oil (Group III), curcumin (Group IV), tartrazine (Group V) and tartrazine+curcumin (Group VI). At the end of the study, the rats were subjected to biochemical, histological and immunohistochemical staining for GFAP. Our results showed that tartrazine induced a significant decrease in GSH, serotonin and GABA levels and a significant increase in MDA levels in the brain as compared to control groups. Tartrazine induced apoptosis, vacuolations, congestion and cellular infiltration in the brain tissue. An immunohistochemistry study showed astrogliosis with increased expression of GFAP. Curcumin ameliorated all these effects. In conclusion, tartrazine is neurotoxic. Increased brain oxidative stress and cellular damage are contributing factors. Curcumin can prevent tartrazine-induced neurotoxicity.

Keywords

Tartrazine, Brain, Oxidative Stress, GFAP, Young Rats, Curcumin

Full Text:

References

Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M. Agro-food byproducts as a new source of natural food additives. Molecules. 2019; 24(6):1056-79. https://doi.org/10.3390/molecules24061056 PMid:30889812 PMCid:PMC6471601.

Carocho M, Morales P, Ferreira IC. Natural food additives: quo vadis? Trends Food Sci Technol. 2015; 45(2):284-95. https://doi.org/10.1016/j.tifs.2015.06.007.

Mahmoud ES, Abd Elwahab AH,Yousuf AF. The alleviative effect of thymoquinone on cerebellar injury induced by food azo dye in rats. Al-Azhar Med J. 2018; 47(2):403- 22. https://doi.org/10.12816/0052264.

El Imam HF, Abd El Salam NN. Evaluation of the effect of tartrazine versus curcumin as food coloring agent on tongue papillae of albino rats (histological and scanning electron microscopic study). EDJ. 2018; 64(3):2241-50. https://doi.org/10.21608/edj.2018.76792.

Reza MSA, Hasan MM, Kamruzzaman M, Hossain MI, Zubair MA, Bari L, et al. Study of a common azo food dye in mice model: Toxicity reports and its relation to carcinogenicity. Food Sci Nutr. 2019; 7(2):667-77. https://doi.org/10.1002/fsn3.906 PMid:30847145 PMCid:PMC6392843.

Bonciu E, Rosculete E, Rosculete C. The clastogenic effect of tartrazine, a synthetic yellow dye, in plant meristematic tissues. Annals of The University of Craiova-Agriculture, Montanology, Cadastre Series. 2020; 49(1):32-5.

Al-Shabib NA, Khan JM, Khan MS, Ali MS, Al-Senaidy AM, Alsenaidy MA, et al. Synthetic food additive dye “tartrazine” triggers amorphous aggregation in cationic myoglobin. Int J Biol Macromol. 2017; 98(2017):277- 86. https://doi.org/10.1016/j.ijbiomac.2017.01.097. PMid:28130138.

Velioglu C, Erdemli ME, Gul M, Erdemli Z, Zayman E, Bag HG, et al. Protective effect of crocin on food azo dye tartrazine-induced hepatic damage by improving biochemical parameters and oxidative stress biomarkers in rats. Gen Physiol Biophys. 2019; 38(1):73-82. https://doi.org/10.4149/gpb_2018039 PMid:30657462.

Khayyat L, Essawy A, Sorour J, Soffar A. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. Peer J. 2017; 5(2017):3041- 55. https://doi.org/10.7717/peerj.3041 PMid:28243541 PMCid:PMC532654 .

Ahmad Z, Hussain R, Riaz M, Khan MA, Nadeem M, Akram K, et al. Mitigation of toxic effects caused by tartrazine in Wistar rats through oral administration of melon seed oil. Pak J Agri Sci. 2019; 56(2):435-42.

El-Desoky GE, Abdel-Ghaffar A, Al-Othman ZA, Habila MA, Al-Sheikh YA, Ghneim HK, et al. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur. Rev. Med. Pharmacol. Sci. 2017; 21(2017):635-45.

Erdemli ME, Gul M, Altinoz E, Zayman E, Aksungur Z, Bag HG. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats. Biomed. Pharmacother. 2017; 96(2017):930-5. https://doi.org/10.1016/j.biopha.2017.11.150 PMid:29217164.

Hashem MM, Abd-Elhakim YM, Abo-El-Sooud K, Eleiwa MME. Embryotoxic and teratogenic effects of tartrazine in rats. Toxicol Res. 2019; 35(1):75-81. https://doi.org/10.5487/TR.2019.35.1.075 PMid:30766659 PMCid:PMC6354951.

Elwan WM, Ibrahim MA. Effect of tartrazine on gastric mucosa and the possible role of recovery with or without riboflavin in adult male albino rat. Egypt J Histol. 2019; 42(2):297-311. https://doi.org/10.21608/ejh.2019.6312.1043.

Soares BM, Araújo TM, Ramos JA, Pinto LC, Khayat BM, Bahia MD, et al. Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow. Anticancer Res. 2015; 35(3):1465-74.

Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul Toxicol Pharmacol. 2015; 73(3):914-22. https://doi.org/10.1016/j.yrtph.2015.09.026 PMid:26404013.

Bhatt D, Vyas K, Singh S, John PJ, Soni I. Tartrazine induced neurobiochemical alterations in rat brain subregions. Food Chem Toxicol. 2018; 113:322-7. https://doi.org/10.1016/j.fct.2018.02.011 PMid:29427609.

Liaquat L, Sadir S, Batool Z, Tabassum S, Shahzad S, Afzal A, et al. Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci. 2019; 217(2019):202-11. https://doi.org/10.1016/j.lfs.2018.12.009 PMid:30528774.

Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization- induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017; 87(2017):223-9. https://doi.org/10.1016/j.biopha.2016.12.105. PMid:28061405.

Hegazi MAM, Basyuni MA, Salim E-SI, Alaasar SR. Oxidative stress in liver and brain of male growing rats supplemented benzene sulfonic acid. Egypt J Exp Biol (Zool). 2017; 13(2):305-14. https://doi.org/10.5455/egysebz. 20170821063216.

Drion CM, van Scheppingen J, Arena A, Geijtenbeek KW, Kooijman L, van Vliet EA, et al. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential antiepileptogenic strategies for temporal lobe epilepsy. J Neuroinflammation. 2018; 15(1):212-23. https://doi.org/10.1186/s12974-018-1247-9. PMid:30037344 PMCid:PMC6056921.

Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH. Role of curcumin in disease prevention and treatment. Adv Biomed Res. 2018; 7(2018):38-48. https://doi.org/10.4103/abr.abr_147_16 PMid:29629341 PMCid:PMC5852989.

Tiwari SK, Agarwal S, Tripathi A, Chaturvedi RK. Bisphenol-A mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical Wnt pathway. Mol Neurobiol. 2016; 53(5):3010-29. https://doi.org/10.1007/s12035-015-9197-z PMid:25963729.

Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience. 2019; 406(2019):1-21. https://doi.org/10.1016/j.neuroscience.2019.02.020 PMid:30825584.

Dhouib IB, Annabi A, Doghri R, Rejeb I, Dallagi Y, Bdiri Y, et al. Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes. Environ Sci Pollut Res. 2017; 24(35):27515-24. https://doi.org/10.1007/s11356-017-0331-5 PMid:28980111.

Waseem M, Parvez S. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. Protoplasma. 2016; 253(2):417-30. https://doi.org/10.1007/s00709-015-0821-6 PMid:26022087.

El-Helbawy NF, Radwan DA, Salem MF, El-Sawaf ME. Effect of monosodium glutamate on body weight and the histological structure of the zona fasciculata of the adrenal cortex in young male albino rats. Tanta Med J. 2017; 45(2):104-13. https://doi.org/10.4103/tmj.tmj_11_17.

Guide for the care and use of laboratory animals. In: Resources IoLA, (ed.). Washington DC: National Academy Press; 2011.

Ahmida MH. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. Exp Toxicol Pathol. 2012; 64(3):149-53. https://doi. org/10.1016/j.etp.2010.07.010 PMid:20832269.

Faheem NM, El Askary A. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in Sprague Dawely rats. Iran. J Basic Med Sci. 2017; 20(6):690-9.

Boussada M, Lamine, JA, Bini I, Abidi N, Lasrem M, El-Fazaa S, El-Golli N. Assessment of a sub-chronic consumption of tartrazine (E102) on sperm and oxidative stress features in Wistar rat. Int Food Res J. 2017; 24(4):1473-81.

Sudjarwo SA, Sudjarwo GW, Koerniasari. Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Res Pharm Sci. 2017; 12(5):381- 90. https://doi.org/10.4103/1735-5362.213983 PMid:28974976 PMCid:PMC561586.

El-Sakhawy MA, Mohamed DW, Ahmed YH. Histological and immunohistochemical evaluation of the effect of tartrazine on the cerebellum, submandibular glands, and kidneys of adult male albino rats. Environ Sci Pollut Res Int. 2019; 26(10):9574-84. https://doi.org/10.1007/s11356-019-04399-5. PMid:30726541.

Mohamed AA, Galal AA, Elewa YH. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem. 2015; 117(7):649-58. https://doi. org/10.1016/j.acthis.2015.07.002. PMid:26190785.

Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. JLab Clin Med. 1963; 61:882-8.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-8. https://doi. org/10.1016/0003-2697(79)90738-3.

Lyubimova NV, Timofeev YS, Churikova TK, Markovich AA, Emelianova GS, Stilidi IS, Kushlinskii NE. Chromogranin A and serotonin for evaluation of treatment efficacy of neuroendocrine tumors. Almanac of Clinical Medicine. 2019; 47(8):685-90. https://doi. org/10.18786/2072-0505-2019-47-054.

Abu Shmais GA, Al-Ayadhi LY, Al-Dbass AM, El-Ansary AK. Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism. J Neurodev Disord. 2012; 4(1):4-15. https:// doi.org/10.1186/1866-1955-4-4. PMid:22958401 PMCid:PMC3374296.

Bancroft JD, Gamble M. Theory and practice of histological techniques. Elsevier Health Sciences; 2008.

Mohamed DA, Ahmed SM. Donepezil improves histological and biochemical changes in the hippocampus of adult hypothyroid male rats. Egypt J Histol. 2018; 41(4):445- 58. https://doi.org/10.21608/ejh.2018.3807.1008.

Kirkpatrick LA, Feeney BC. A simple guide to IBM SPSS statistics for version 20.0. Belmont, California: Wadsworth, Cengage Learning; 2013.

Elgendy EM, Al-Zahrani NA. Comparative study of natural and synthetic food additive dye amaranth through photochemical reactions. Indian J Sci Res. 2015; 4(1): 827-32.

Amin KA, Hameid II HAA, Abd Elsttar AH. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol. 2010; 48(10):2994-9. https://doi.org/10.1016/j. fct.2010.07.039. PMid:20678534.

Demirkol O, Zhang X, Ercal N. Oxidative effects of tartrazine (CAS No. 1934-21-0) and new coccin (CAS No. 2611-82-7) azo dyes on CHO cells. J Verbrauch Lebensm. 2012; 7(3):229-36. https://doi.org/10.1007/ s00003-012-0782-z.

Brondino N, Re S, Boldrini A, Cuccomarino A, Lanati N, Barale F, Politi P. Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies. Sci. World J. 2014; 2014:1-6. https:// doi.org/10.1155/2014/174282. PMid:24578620 PMCid:PMC3919104.

Seddon N, D’Cunha NM, Mellor DD, McKune AJ, Georgousopoulou EN, Panagiotakos DB, et al. Effects of curcumin on cognitive function-a systematic review of randomized controlled trials. Explor Res Hypothesis Med. 2019; 4(1):1-11. https://doi.org/10.14218/ERHM.2018.00024.

Albasher G, Maashi N, Alfarraj S, Almeer R, Albrahim T, Alotibi F, et al. Perinatal exposure to tartrazine triggers oxidative stress and neurobehavioral alterations in mice offspring. Antioxidants. 2020; 9(1):53-67. https://doi.org/10.3390/antiox9010053. PMid:31936188 PMCid:PMC7023231.

Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol. 2014; 12(2):140-7. https://doi.org/10.2174/1570159X11666131120230309. PMid:24669208 PMCid:PMC3964745.

Bawazir A. Effects of food colour allura red (No. 129) on some neurotransmitter, antioxidant functions and bioelement contents of kidney and brain tissues in male albino rats. Life Sci. 2016; 13(12):10-17.

Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol. 2019; 33(10):1199-214. https://doi.org/10.1177/0269881119845820. PMid:31039654.

Mandal PK, Tripathi M, Sugunan S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/ female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem Biophys Res Commun. 2012; 417(1):43-8. https://doi.org/10.1016/j. bbrc.2011.11.047. PMid:22120629.

Naziroglu M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res. 2009 ;34(12):2181-91. https://doi. org/10.1007/s11064-009-0015-8. PMid:19513830.

Kassab RB, El-Hennamy RE. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt J Basic Appl. Sci. 2017; 4(3):160-7. https://doi.org/10.1016/j. ejbas.2017.07.002.

Chauhan SS, Ojha S, Mahmood A. Neurotoxicity of fluoride in ethanol fed rats: Role of oxidative stress, mitochondrial dysfunction and neurotransmitters. Indian J Exp Biol. 2020; 58(1):14-22.

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017; 524:13-30. https://doi. org/10.1016/j.ab.2016.10.021. PMid:27789233.

Cemek M, Büyükokuro?lu ME, Sertkaya F, Alpda?ta? S, Hazini A, et al. Effects of food color additives on antioxidant functions and bioelement contents of liver, kidney and brain tissues in rats. J Food Nutr Res. 2014; 2(10):686-91. https://doi.org/10.12691/jfnr-2-10-6.

Alsalman N, Aljafari A, Wani TA, Zargar S. High- Dose aspirin reverses tartrazine-induced cell growth dysregulation independent of p53 signaling and antioxidant mechanisms in rat brain. Biomed Res Int. 2019; 2019(1):1-8. https://doi.org/10.1155/2019/9096404. PMid:31032366 PMCid:PMC6457281.

Scholpp J, Schubert JK, Miekisch W, Noeldge- Schomburg GF. Lipid peroxidation early after brain injury. J Neurotrauma. 2004; 21(6):667-77. https://doi.org/10.1089/0897715041269632. PMid:15253795.

Abbaoui A, Gamrani H. Neuronal, astroglial and locomotor injuries in subchronic copper intoxicated rats are repaired by curcumin: A possible link with Parkinson’s disease. Acta Histochem. 2018; 120(6):542-50. https:// doi.org/10.1016/j.acthis.2018.06.005. PMid:29954586.

Yoo GY, Kim E, Kang H, Kim J, Yeo WS. Mass spectrometric investigation of concentration-dependent effect of curcumin and oxidative stress on intracellular glutathione levels. Anal Bioanal Chem. 2020; 412(12):2873-80. https://doi.org/10.1007/s00216-020- 02524-9. PMid:32112130.

Amer MG, Karam RA. Morphological and biochemical features of cerebellar cortex after exposure to zinc oxide nanoparticles: Possible protective role of curcumin. Anat Rec. 2018; 301(8):1454-66. https://doi.org/10.1002/ ar.23807. PMid:29575794.

El-Nabarawy SK, Radwan OK, El-Sisi SF, Abdel-razek AM. Comparative study of some natural and artificial food coloring agents on depression, anxiety and antisocial behavior in weanling rats. IOSR J Pharm Biol Sci. 2015; 10(2):83-9.

Eman GM, Ibrahim MA-l, Hassan AH, Ebtehal MF. Quercetin nanoparticles repressed liver and brain toxicities induced by tartrazine in rats. J Drug Deliv Ther. 2018; 8(5):230-40. https://doi.org/10.22270/jddt.v8i5.1865.

Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol. Ther. 2019; 199(2019):58-90. https://doi.org/10.1016/j.pharmthera.2019.02.017. PMid:30851296.

Peek AL, Rebbeck T, Puts NA, Watson J, Aguila MR, Leaver AM. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. NeuroImage. 2020; 210(2020):1- 20. https://doi.org/10.1016/j.neuroimage.2020.116532. PMid:31958584.

Bawazir A. Effect of chocolate brown HT with olive oil on some neurotransmitters in different brain regions, physiological and histological structure of liver and kidney of male albino rats. J of Evolutionary Bio Res. 2012; 4(1):13-23. https://doi.org/10.5897/JEBR12.001.

Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013; 46(2013):224-35. https://doi. org/10.1016/j.pnpbp.2012.09.008. PMid:23022673.

Diniz TC, Silva JC, Lima-Saraiva SR, Ribeiro FP, Pacheco AG, de Freitas RM, Quintans-Júnior LJ, Quintans JD, Mendes RL, Almeida JR. The role of flavonoids on oxidative stress in epilepsy. Oxidative Oxid Med Cell Longev. 2015; 2015:1-9. https://doi.org/10.1155/2015/171756. PMid:25653736 PMCid:PMC4306219.

Murad H, Suliaman M, Abdallah H, Abdulsattar M. Does curcumin or pindolol potentiate fluoxetine’s antidepressant effect by a pharmacokinetic or pharmacodynamic interaction? Indian J Pharm Sci. 2014; 76(3):203-10.

Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP. Effects of chronic exposure to selenomethionine on social learning outcomes in zebrafish (Danio rerio): serotonergic dysregulation and oxidative stress in the brain. Chemosphere. 2020; 247(2020):1-9. https://doi.org/10.1016/j.chemosphere.2020.125898. PMid:31972490.

Moghaddam SN, Qujeq D, Efahani AAR, Moghaddam SN. Effect of curcumin on the hypothalamus levels of the potent inhibitory neurotransmitter, gamma aminobutyric acid. Res Mol Med. 2015; 3(1):24-7.

Gao Y, Li C, Shen J, Yin H, An X, Jin H. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved. J Food Sci. 2011; 76(6):125-9. https://doi.org/10.1111/ j.1750-3841.2011.02267.x. PMid:22417523.

Ghonimi WA, Elbaz A. Histological changes of selected Westar rat tissues following the ingestion of tartrazine with special emphasis on the protective effect of royal jelly and cod liveroil. J Cytol Histol. 2015; 6(4):1-10. https://doi.org/10.4172/2157-7099.1000346.

Motaghinejad M, Motevalian M, Fatima S, Faraji F, Mozaffari S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB-BDNF signaling pathway. Neurochem Res. 2017; 42(10):2921-32. https://doi.org/10.1007/s11064-017- 2323-8. PMid:28608236.

Mimnaugh EG, Xu W, Vos M, Yuan X, Neckers L. Endoplasmic reticulum vacuolization and valosin- containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol Cancer Res. 2006; 4(9):667-81. https://doi.org/10.1158/1541-7786. MCR-06-0019. PMid:16966435.

Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009; 16(10):1303-14. https://doi.org/10.1038/cdd.2009.107. PMid:19662025.

Chaudhary M, Joshi DK, Tripathi S, Kulshrestha S, Mahdi AA. Docosahexaenoic acid ameliorates aluminum induced biochemical and morphological alteration in rat cerebellum. Ann Neurosci. 2014; 21(1):5-9. https:// doi.org/10.5214/ans.0972.7531.210103.

Jayaraj RL, Tamilselvam K, Manivasagam T, Elangovan N. Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. J Mol Neurosci. 2013; 51(3):863-70. https://doi.org/10.1007/s12031-013-0075- 8. PMid:23900721.

Manogaran E, Ramanathan M, Rao TR. Neuroprotective effect of curcumin against cholesterol induced neuroinflammation in in-vitro and in-vivo models. J Pharm Sci Res. 2015; 7(4):189-96.

Ali MF, Taha M. Pathological and hematological studies on the effect of curcumin on manganese chloride- induced neurotoxicity in rats. Comp Clin Path. 2019; 28(1):69-82. https://doi.org/10.1007/s00580-018- 02888-6.

Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin activates the Nrf2 Pathway and induces cellular protection against oxidative injury. Curr Mol Med. 2020; 20(2):116-33. https://doi.org/10.2174/1566524019666191016150757. PMid:31622191.

Cheon SY, Cho KJ, Song J, Kim GW. Knockdown of apoptosis signal?regulating kinase 1 affects ischaemiainduced astrocyte activation and glial scar formation. Eur J Neurosci. 2016; 43(7):912-22. https://doi.org/10.1111/ ejn.13175. PMid:26797817.

Mrozek S, Delamarre L, Capilla F, Al-Saati T, Fourcade O, et al. Cerebral expression of glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase-L1, and matrix metalloproteinase 9 after traumatic brain injury and secondary brain insults in rats. Biomark Insights. 2019; 14:1-13. https://doi.org/10.1177/1177271919851515. PMid:31210728 PMCid:PMC6552356.

Réus GZ, Silva RH, de Moura AB, Presa JF, Abelaira HM, Abatti M, et al. Early maternal deprivation induces microglial activation, alters glial fibrillary acidic protein immunoreactivity and indoleamine 2, 3-dioxygenase during the development of offspring rats. Mol Neurobiol. 2019; 56(2):1096-108. https://doi.org/10.1007/s12035- 018-1161-2. PMid:29873040.

Bondan E, Cardoso C, Martins MF. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem. Arq Neuropsiquiatr. 2017; 75(8):546-52. https:// doi.org/10.1590/0004-282x20170092. PMid:28813085.

Otoabasi AA, Ele E, Ekpenyong IT, Amarachi EM, Anozeng IO, Bassey ET. Glial fibrillary acidic protein expression and histopathology of rat’s cerebrum following consumption of ethanolic stem extract and juice of Costus afer. European J Med Plants. 2016; 14(3):1-8. https://doi.org/10.9734/EJMP/2016/24506.

Yang Z, Wang KK. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015; 38(6):364-74. https:// doi.org/10.1016/j.tins.2015.04.003. PMid:25975510 PMCid:PMC4559283.

Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012; 32(18):6391-410. https:// doi.org/10.1523/JNEUROSCI.6221-11.2012. PMid:22553043 PMCid:PMC3480225.

Haim LB, Carrillo-de Sauvage MA, Ceyzeriat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 2015; 9(2015):1-27. https://doi.org/10.3389/fncel.2015.00278. PMid:26283915 PMCid:PMC4522610.

Wang YF, Zu JN, Li J, Chen C, Xi CY, et al. Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation. Neurosci Lett. 2014; 560(2014):51-6. https://doi.org/10.1016/j.neulet. 2013.11.050. PMid:24316441.

Yuan J, Liu W, Zhu H, Chen Y, Zhang X, Li L, et al. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Brain Res. 2017; 1655(2017):90-103. https://doi.org/10.1016/j.brainres.2016.11.002. PMid:27865778.


Refbacks

  • There are currently no refbacks.