Blood Glucose and Glycogen Levels as Indicators of Stress in the Freshwater Fish, Cirrihinus mrigal under Cyphenothrin Intoxication

Jump To References Section

Authors

  • Environmental Biology and Molecular Toxicology Laboratory, Karnataka University, Dharwad – 580003, Karnataka ,IN
  • Environmental Biology and Molecular Toxicology Laboratory, Karnataka University, Dharwad – 580003, Karnataka ,IN
  • Department of P.G. Studies in Zoology, Karnataka University, Dharwad – 580003, Karnataka ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i1/30444

Keywords:

Carbohydrate Metabolism, Cyphenothrin, LDH, SDH

Abstract

Pesticides are non-biodegradable substances used to control bugs, weeds, snails, and plant diseases. They are widely utilised in forestry, farming, and veterinary practices and are of incredible general well-being significance. Pesticides can be ordered by their utilisation into three significant sorts (in particular insect sprays, herbicides, and fungicides). Water defilement by these pesticides is known to prompt harmful effects on the creation, proliferation, and survivability of aquatic life forms, like green growth, amphibian plants, and fish (shellfish and finfish species). The information presented in this study is used to assess the negative effects of exposing fish species to pesticide concentrations. Pyrethroids are regularly utilised around the home and in agricultural production to control bugs. Human contact with at least one pyrethroid bug spray is reasonable. These synthetic substances cause serious harm to aquatic biological systems, particularly fish. The principle points and objective of the present investigation are to assess the effect of cyphenothrin on carbohydrate metabolism in the fish. Cirrihinus mrigal is a monetarily significant Indian major carp. A freshwater fish, Cirrihinus mrigal, was exposed to bug spray, i.e., cyphenothrin a manufactured pyrethroid. The LC50 for cyphenothrin at 96 hrs was 6 μg/L by probit analysis. One-fifth of LC50 (120 μg/L), was chosen as the sublethal focus. The fish were subjected to sub-lethal concentrations for 10, 20, 30 and 40 days, and the changes in starch digestion, for example, absolute glycogen, as well as the activities of catalysts Lactate Dehydrogenase (LDH) and Succinate Dehydrogenase (SDH) in critical organs, such as the gill, kidney, and liver, were studied.

Downloads

Download data is not yet available.

Published

2023-03-20

How to Cite

Anigol, S. S., Neglur, S. B., & David, M. (2023). Blood Glucose and Glycogen Levels as Indicators of Stress in the Freshwater Fish, <i>Cirrihinus mrigal</i> under Cyphenothrin Intoxication. Toxicology International, 30(1), 51–62. https://doi.org/10.18311/ti/2023/v30i1/30444
Received 2022-06-10
Accepted 2023-01-05
Published 2023-03-20

 

References

Costa LG. The neurotoxicity of organochlorine and pyrethroid pesticides. Handbook of clinical neurology. 2015; 131:135-48. https://doi.org/10.1016/B978-0-444- 62627-1.00009-3

Huckabee WE. Relationship of pyruvate and lactate during anaerobic metabolism. V: Coronary adequacy. American Journal of Physiology-Legacy Content. 1961; 200(6):1169-76. https://doi.org/10.1152/ajple¬gacy.1961.200.6.1169 DOI: https://doi.org/10.1152/ajplegacy.1961.200.6.1169

Bakr RF, Kamel AM, Sheba SA, Abdel-Haleem DR. A mathematical model for estimating the LC50 (or LD50) among an insect life cycle. Egyptian Academic Journal of Biological Sciences. A, Entomology. 2010; 3(2):75-81. https://doi.org/10.21608/eajbsa.2010.15191 DOI: https://doi.org/10.21608/eajbsa.2010.15191

Holcombe GW, Phipps GL, Tanner DK. The acute toxicity of kelthane, dursban, disulfoton, pydrin, and permethrin to fathead minnows Pimephales promelas and rainbow trout Salmo gairdneri. Environmental Pollution Series A, Ecological and Biological. 1982; 29(3):167-78. https:// doi.org/10.1016/0143-1471(82)90161-1

Costa LG. The neurotoxicity of organochlorine and pyrethroid pesticides. Handbook of clinical neurology. 2015; 131:135-48. https://doi.org/10.1016/B978-0-444- 62627-1.00009-3 DOI: https://doi.org/10.1016/B978-0-444-62627-1.00009-3

Dhavale DM, Masurekar VB. Variations in the glucose and glycogen content in the tissues of Scylla serrata (Forskal) under the influence of cadmium toxicity. Geobios. 1986; 13:139-42.

Albano M, Panarello G, Di Paola D, Capparucci F, Crupi R, Gugliandolo E, Spano N, Capillo G, Savoca S. The influence of polystyrene microspheres abundance on development and feeding behavior of Artemia salina (Linnaeus, 1758). Applied Sciences. 2021; 11(8):3352. https://doi.org/10.3390/app11083352 DOI: https://doi.org/10.3390/app11083352

Basha SM, Rao KP, Rao KS, Rao KR. Respiratory potentials of the fish (Tilapia mossambica) under mal¬athion, carbaryl and lindane intoxication. Bulletin of Environmental Contamination and Toxicology. 1984; 32:570-4. https://doi.org/10.1007/BF01607539

David M, Kumar RS, Mushigeri SB, Kuri RC. Blood glucose and glycogen levels as indicators of stress in the freshwater fish, Labeo rohita under fenvalerate intoxi¬cation. Journal of Ecotoxicology and Environmental Monitoring. 2005; 15(1):1-5.

Gautam PP, Gupta AK. Toxicity of cypermethrin to the juveniles of freshwater fish Poecilia reticulata (Peters) in relation to selected environmental variables.

David M, Kumar RS, Mushigeri SB, Kuri RC. Blood glu¬cose and glycogen levels as indicators of stress in the freshwater fish, Labeo rohita under fenvalerate intoxi¬cation. Journal of Ecotoxicology and Environmental Monitoring. 2005; 15(1):1-5.

Hawkins WE, Walker WW, Fournie JW, Manning CS, Krol RM. Use of the Japanese medaka (Oryzias latipes) and guppy (Poecilia reticulata) in carcinogenesis test¬ing under national toxicology program protocols. Toxicologic Pathology. 2003; 31(1_suppl):88-91. https:// doi.org/10.1080/01926230309771

Dangi J, Gupta AK. Short-term toxicity of cypermethrin- EC25 to males and females of a freshwater fish, Poecilia reticulata for selected levels of hardness and pH of water. Res. Environ. Life Sci. 2012; 5:87-90.

Hawkins WE, Walker WW, Fournie JW, Manning CS, Krol RM. Use of the Japanese medaka (Oryzias latipes) and guppy (Poecilia reticulata) in carcinogenesis test¬ing under national toxicology program protocols. Toxicologic Pathology. 2003; 31(1_suppl):88-91. https:// doi.org/10.1080/01926230309771

Bounias M, Dujin N, Popeskovic DS. Sublethal effects of a synthetic pyrethroid, deltamethrin, on the glycemia, the lipemia, and the gut alkaline phosphatases of honeybees. Pesticide Biochemistry and Physiology. 1985; 24(2):149- 60. https://doi.org/10.1016/0048-3575(85)90124-5

Cárcamo JG, Aguilar MN, Carreño CF, Vera T, Arias- Darraz L, Figueroa JE, Romero AP, Alvarez M, Yañez AJ. Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxi¬fication enzymes in the rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2017; 191:129-37. DOI: https://doi.org/10.1016/j.cbpc.2016.10.004

Caroll, NV, Longley RW, Row JH. Glycogen determina¬tion in liver and muscle by use of anthrone reagent. J. Biol. Chem. 1956; 22:583-593. https://doi.org/10.1016/ S0021-9258(18)65284-6

Friedmann JE, Hangen GE. Pyruvic acid. Collection of blood for the determination of pyruvic and lactic acids. J. Biol. Chem. 1942; 144:67-77. https://doi.org/10.1016/ S0021-9258(18)72558-1

Albano M, Panarello G, Di Paola D, D’Angelo G, Granata A, Savoca S, Capillo G. The mauve stinger Pelagia noc¬tiluca (Cnidaria, Scyphozoa) plastics contamination, the Strait of Messina case. International Journal of Environmental Studies. 2021; 78(6):977-82. https://doi. org/10.1080/00207233.2021.1893489 DOI: https://doi.org/10.1080/00207233.2021.1893489

Barker SB, Summerson WH. The colorimetric deter¬mination of lactic acid in biological material. Journal of Biological Chemistry. 1941; 138:535-54. https://doi. org/10.1016/S0021-9258(18)51379-X DOI: https://doi.org/10.1016/S0021-9258(18)51379-X

Dikshith TS, Tandon SK, Datta KK, Gupta PK, Behari JR. Comparative response of male rats to parathion and lindane: Histopathological and biochemical studies. Environmental research. 1978; 17(1):1-9. https://doi. org/10.1016/0013-9351(78)90056-7

Gautam PP, Gupta AK. Toxicity of cypermethrin to the juveniles of freshwater fish Poecilia reticulata (Peters) in relation to selected environmental variables.

Polat H, Erkoc FU, Viran R, Kocak O. Investigation of acute toxicity of beta-cypermethrin on guppies Poecilia reticulata. Chemosphere. 2002; 49(1):39-44. https://doi. org/10.1016/S0045-6535(02)00171-6 DOI: https://doi.org/10.1016/S0045-6535(02)00171-6

Yilmaz M, Gul A, Erbasli K. Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulata, Pallas, 1859). Chemosphere. 2004; 56(4):381-5. https://doi. org/10.1016/j.chemosphere.2004.02.034 DOI: https://doi.org/10.1016/j.chemosphere.2004.02.034

Viran R, Erkoc FU, Polat H, Kocak O. Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicology and environmental safety. 2003; 55(1):82-5. https://doi.org/10.1016/S0147- 6513(02)00096-9 DOI: https://doi.org/10.1016/S0147-6513(02)00096-9

Selvi M, Sarıkaya R, Erkoc F, Kocak O. Investigation of acute toxicity of chlorpyrifos-methyl on guppy Poecilia reticulata. Chemosphere. 2005; 60(1):93-6. https://doi. org/10.1016/j.chemosphere.2004.11.093 DOI: https://doi.org/10.1016/j.chemosphere.2004.11.093

Gunde EG, Yerli SV. The Comparative Study on the Acute Toxicity of Dichlorvos on Guppy Poecilia reticulata, P., 1859 and Carp Cyprinus carpio, L., 1758. Hacettepe Journal of Biology and Chemistry. 2012; 40(2):165-70.

Baser S, Erkoc F, Selvi M, Kocak O. Investigation of acute toxicity of permethrin on guppies Poecilia reticu¬lata. Chemosphere. 2003; 51(6):469-74. https://doi. org/10.1016/S0045-6535(03)00033-X DOI: https://doi.org/10.1016/S0045-6535(03)00033-X

Muranli FD, Guner U. Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid insecticide lambda-cyhalothrin. Mutation Research/ Genetic Toxicology and Environmental Mutagenesis. 2011; 726(2):104-8. https://doi.org/10.1016/j. mrgentox.2011.05.004 DOI: https://doi.org/10.1016/j.mrgentox.2011.05.004

Saliu JK. Acute Toxicity of Premium Motor Spirit to the Guppy (Poecilia reticulata, Peters, 1859). Pakistan Journal of Biological Sciences. 2007; 10(4):679-81. https://doi.org/10.3923/pjbs.2007.679.681 DOI: https://doi.org/10.3923/pjbs.2007.679.681

Neglur SB, Sanakal RD, David M. Studies on toxicological endpoints of fenoxaprop-p-ethyl on behavioral changes in freshwater exotic carp Cyprinus carpio (Linnaeus). Journal of Advanced Scientific Research. 2020; 11(3 Sup 7):84-90.

Nelson N, Somogyi N. A photometric adaptation of Somogyi method for the determination of glucose. J. Biol. Chem. 1952; 195:19-23. https://doi.org/10.1016/ S0021-9258(19)50870-5

Caroll NV, Longley RW, Row JH. Glycogen determina¬tion in liver and muscle by use of anthrone reagent. J. Biol. Chem. 1956; 22:583-593. https://doi.org/10.1016/ S0021-9258(18)65284-6

Cori GT, Illingworth B, Keller PJ. [23] Muscle phosphor¬ylase: ξ Glucose-l-phosphate+ Gn⇄ Gn+ z+ ξInorganic Phosphate.

Friedmann JE, Hangen GE. Pyruvic acid. Collection of blood for the determination of pyruvic and lactic acids. J. Biol. Chem. 1942; 144:67-77. https://doi.org/10.1016/ S0021-9258(18)72558-1

Neglur SB, Sanakal RD, David M, Prakash L. Studies on haematological and histopathological alterations induced by sublethal concentration of fenoxaprop-p-ethyl on freshwater fish Cyprinus carpio. Explor. Anim. Medical Res. 2021; 11(1):55. https://doi.org/10.52635/ EAMR/11.1.55-66 DOI: https://doi.org/10.52635/EAMR/11.1.55-66

Holcombe GW, Phipps GL, Tanner DK. The acute toxicity of kelthane, dursban, disulfoton, pydrin, and permethrin to fathead minnows Pimephales promelas and rainbow trout Salmo gairdneri. Environmental Pollution Series A, Ecological and Biological. 1982; 29(3):167-78. https:// doi.org/10.1016/0143-1471(82)90161-1 DOI: https://doi.org/10.1016/0143-1471(82)90161-1

Vernberg FJ, Gray IE. A comparative study of the respi¬ratory metabolism of excised brain tissue of marine teleosts. The Biological Bulletin. 1953; 104(3):445-9. https://doi.org/10.2307/1538497 DOI: https://doi.org/10.2307/1538497

Watson MS. Bibliography on Tissue Cultures: Invertebrates and Cold-blooded Chordates. Fort Detrick Frederick MD. 1966. https://doi.org/10.21236/ AD0658678 DOI: https://doi.org/10.21236/AD0658678

Samuel M, Sastry KV. In vivo effect of monocrotophos on the carbohydrate metabolism of the freshwater snake head fish, Channa punctatus. Pesticide Biochemistry and Physiology. 1989; 34(1):1-8. https://doi. org/10.1016/0048-3575(89)90134-X

Bounias M, Dujin N, Popeskovic DS. Sublethal effects of a synthetic pyrethroid, deltamethrin, on the glycemia, the lipemia, and the gut alkaline phosphatases of honeybees. Pesticide biochemistry and physiology. 1985; 24(2):149- 60. https://doi.org/10.1016/0048-3575(85)90124-5 DOI: https://doi.org/10.1016/0048-3575(85)90124-5

Zaher A. Changes in rat blood profile and blood chemis¬try after repeated dermal application of fenvalerate and decamethrin.

Bakthavathsalam R. Toxicity and physiological impact of three selected pesticides on an air-breathing fish, Anabas testudineus (Bloch) (Doctoral dissertation, Ph. D. thesis. Annamalai University, Annamalainagar, India).

Mukhopadhyay PK, Dehadrai PV. Biochemical changes in the air-breathing catfish Clarias batrachus (Linn.) exposed to malathion. Environmental pollution Series A, ecological and biological. 1980; 22(2):149-58. https:// doi.org/10.1016/0143-1471(80)90190-7 DOI: https://doi.org/10.1016/0143-1471(80)90190-7

Basha SM, Rao KP, Rao KS, Rao KR. Respiratory potentials of the fish (Tilapia mossambica) under mal¬athion, carbaryl and lindane intoxication. Bulletin of Environmental Contamination and Toxicology. 1984; 32:570-4. https://doi.org/10.1007/BF01607539 DOI: https://doi.org/10.1007/BF01607539

Sastry KV, Siddiqui AA. Chronic toxic effects of the carbamate pesticide sevin on carbohydrate metabo¬lism in a freshwater snakehead fish, Channa punctatus. Toxicology letters. 1982; 14(1-2):123-30. https://doi. org/10.1016/0378-4274(82)90019-4 DOI: https://doi.org/10.1016/0378-4274(82)90019-4

Diwan AD, Hingorani HG, Naidu NC. Levels of blood glucose and tissue glycogen in two live fish exposed to industrial effluent. Bulletin of Environmental Contamination and Toxicology. 1979; 21:269-72. https:// doi.org/10.1007/BF01685422 DOI: https://doi.org/10.1007/BF01685422

Friedmann JE, Hangen GE. Pyruvic acid. Collection of blood for the determination of pyruvic and lactic acids. J. Biol. Chem. 1942; 144:67-77. https://doi.org/10.1016/ S0021-9258(18)72558-1 DOI: https://doi.org/10.1016/S0021-9258(18)72558-1

Dhavale DM, Masurekar VB. Variations in the glucose and glycogen content in the tissues of Scylla serrata (Forskal) under the influence of cadmium toxicity. Geobios. 1986; 13:139-42.

Samuel M, Sastry KV. In vivo effect of monocrotophos on the carbohydrate metabolism of the freshwater snake head fish, Channa punctatus. Pesticide Biochemistry and Physiology. 1989; 34(1):1-8. https://doi. org/10.1016/0048-3575(89)90134-X DOI: https://doi.org/10.1016/0048-3575(89)90134-X

Rao KS, Rao KR. Effect of sublethal concentration of methyl parathion on selected oxidative enzymes and organic constituents in the tissues of the freshwater fish, Tilapia mossambica (Peters). Current Science. 1979; 526- 8.

Venkataramudu M, Chennaiah K, Seshapani P. Respiratory responses in freshwater fish Channa punc¬tatus (Bloch) during sublethal toxicity of deltamethrin in relation to sex. Tropical Freshwater Biology. 2010; 19(1):33.

Edwards CA. Pesticide residues in soil and water. Environmental pollution by pesticides. 1973; 409-58. https://doi.org/10.1007/978-1-4615-8942-6_12 DOI: https://doi.org/10.1007/978-1-4615-8942-6_12

Dezwan CA. Environmental pollution by pesticides. Plenum press. New York. 1971; 250 pp.

Srinivasa Moorthy K. Modulation of carbohydrate and associated metabolism in the selected tissues of fresh¬water mussel, Lamellidens marginalis during induced methyl parathion stress (Doctoral dissertation, Ph. D thesis submitted to SV University, Tirupati, India).

David M, Kartheek RM. Biochemical changes in liver of freshwater fish Cyprinus carpio exposed to sublethal concentration of sodium cyanide. Indo Am. J. Pharm. Res. 2014; 4(9):3669-75.

David M, Kumar RS, Mushigeri SB, Kuri RC. Blood glu¬cose and glycogen levels as indicators of stress in the freshwater fish, Labeo rohita under fenvalerate intoxi¬cation. Journal of Ecotoxicology and Environmental Monitoring. 2005; 15(1):1-5.

Neglur SB, Sanakal MD. Studies on Fenaxoprop-P-Ethyl Induced Antioxidant Response in Cyprinus carpio L.

Neglur SB, Sanakal RD, David M. Fenoxapro-P-Ethyl Induced Biochemical Changes in Fresh Water Fish Cyprinus carpio under Sublethal Exposure.

Reddy AT, Yellamma K. Perturbations in carbohy¬drate metabolism during cypermethrin toxicity in fish, Tilapia mossambica. Biochemistry International. 1991; 23(4):633-8.

Murty AS. Toxicity of pesticides to fish. CRC press; 2018 Jan 18. https://doi.org/10.1201/9781351077378 DOI: https://doi.org/10.1201/9781351077378

Nakano T, Tomlinson N. Catecholamine and car¬bohydrate concentrations in rainbow trout (Salmo gairdneri) in relation to physical disturbance. Journal of the Fisheries Board of Canada. 1967; 24(8):1701-15. https://doi.org/10.1139/f67-140 DOI: https://doi.org/10.1139/f67-140

Chaudhry HS, Nath K. Nickel induced hyperglycemia in the freshwater fish, Colisa fasciatus. Water, Air, and Soil Pollution. 1985; 24:173-6. https://doi.org/10.1007/ BF00285442 DOI: https://doi.org/10.1007/BF00285442

Ullah S, Zorriehzahra MJ. Ecotoxicology: A review of pesticides induced toxicity in fish. Advances in Animal and Veterinary Sciences. 2015; 3(1):40-57. https://doi. org/10.14737/journal.aavs/2015/3.1.40.57 DOI: https://doi.org/10.14737/journal.aavs/2015/3.1.40.57

Oguri M, Nace PF. Blood sugar and adrenal histology of the goldfish after treatment with mammalian adre¬nocorticotrophic hormone. Chesapeake Science. 1966; 7(4):198-202. https://doi.org/10.2307/1350434 DOI: https://doi.org/10.2307/1350434

Srivastava AK, Mishra J. Effects of lindane on car¬bohydrate metabolism and on blood chloride in the Indian catfish Heteropneustes fossilis (Bloch.). Acta Hydrobiologica. 1982.

Koundinya PR, Ramamurthi R. Tissue respiration in Tilapia mossambica exposed to lethal (LC50) concentra¬tion of sumithion and sevin. Indian J. Environ. Health. 1978; 20:126.

Srivastava AK, Singh NN. Effects of acute exposure to methyl parathion on carbohydrate metabolism of Indian catfish (Heteropneustes fossilis). Acta Pharmacologica et Toxicologica. 1981; 48(1):26-31. https://doi. org/10.1111/j.1600-0773.1981.tb01583.x DOI: https://doi.org/10.1111/j.1600-0773.1981.tb01583.x

Lowe-Jinde L, Niimi AJ. Short-term and long-term effects of cadmium on glycogen reserves and liver size in rainbow trout (Salmo gairdneri Richardson). Archives of environmental contamination and toxicology. 1984; 13:759-64. https://doi.org/10.1007/BF01055940 DOI: https://doi.org/10.1007/BF01055940

Naidu KA, Naidu KA, Ramamurthi R. Acute effect of mercury toxicity on some enzymes in liver of tele¬ost Sarotherodon mossambicus. Ecotoxicology and Environmental Safety. 1984; 8(3):215-8. https://doi. org/10.1016/0147-6513(84)90024-1 DOI: https://doi.org/10.1016/0147-6513(84)90024-1

Dikshith TS, Tandon SK, Datta KK, Gupta PK, Behari JR. Comparative response of male rats to parathion and lindane: Histopathological and biochemical studies. Environmental Research. 1978; 17(1):1-9. https://doi. org/10.1016/0013-9351(78)90056-7 DOI: https://doi.org/10.1016/0013-9351(78)90056-7

Camba R, Mor MD. Mitochondrial biochemical damage in parathion poisoning. Ful-, orr-, gegegyogyazat. 1962; 45:229-41.

Rangaswamy CP, Padmanabha Naidu B. Endosulfan changes in the enzymes of energy metabolism in the edible fish, Tilapia mossambica. Ad. Bios. 1999; 18(1):99- 110.

Asztalos B, Nemcsok J. Effect of pesticides on the LDH activity and isoenzyme pattern of carp (Cyprinus car¬pio L.) sera. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology. 1985; 82(1):217-9. https://doi.org/10.1016/0742- 8413(85)90233-6 DOI: https://doi.org/10.1016/0742-8413(85)90233-6

Margarat A, Jagadeesan G, Sethupathy S. Comparative Effect of Penicillamine and Taurine on Mercury Poisoned Mice, Mus

Kossman S, Wartal Sha G. Activity of some enzymes in the urine of workers producing chloronated hydrocar¬bon pesticides. Med Pr. 1984; 25:403-7.

Bhatia SC, Sharma SC, Venkitasubramanian TA. Acute Dieldirin Toxicity: Biochemical Changes in the Blood. Archives of Environmental Health: An International Journal. 1972; 24(5):369-72. https://doi.org/10.1080/00 039896.1972.10666106 DOI: https://doi.org/10.1080/00039896.1972.10666106

Usha Rani A, Ramamurthi R. Effect of sublethal con¬centration of cadmium on oxidative metabolism in the freshwater Teleost, Tilapia mossambica. Indian J. Comp. Anim. Physiol. 1987; 5(2):71-4.

Philip GH, Reddy PM, Ramamurthi R. Changes in the carbohydrate metabolism in the selected tissues of Mus booduga gray after BHC treatment. Biochemistry International. 1991; 24(6):1165-71.

Buckley JT, Roch M, McCarter JA, Rendell CA, Matheson AT. Chronic exposure of coho salmon to sub¬lethal concentrations of copper.--I. Effect on growth, on accumulation and distribution of copper, and on copper tolerance. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 1982; 72(1):15-9. https://doi.org/10.1016/0306-4492(82)90198-8 DOI: https://doi.org/10.1016/0306-4492(82)90198-8

Finney DJ. A statistical treatment of the sigmoid response curve. Probit analysis. Cambridge University Press, London. 1971;633.

Salako AF, Amaeze NH, Shobajo HM, Osuala FI. Comparative acute toxicity of three pyrethroids (Deltamethrin, cypermethrin and lambda-cyhalothrin) on guppy fish (Poecilia reticulata peters, 1859). Scientific African. 2020 Sep 1;9:e00504. DOI: https://doi.org/10.1016/j.sciaf.2020.e00504

Reda AA, Fisseha S, Mengistie B, Vandeweerd JM. Standard precautions: occupational exposure and behavior of health care workers in Ethiopia. PLoS One. 2010; 5(12):e14420. DOI: https://doi.org/10.1371/journal.pone.0014420

Hawkins WE, Walker WW, Fournie JW, Manning CS, Krol RM. Use of the Japanese medaka (Oryzias latipes) and guppy (Poecilia reticulata) in carcinogenesis test¬ing under national toxicology program protocols. Toxicologic pathology. 2003; 31(1_suppl):88-91. DOI: https://doi.org/10.1080/01926230309771

Yeung D, Oliver IT. Induction of phosphopyruvate car¬boxylase in neonatal rat liver by adenosine 3’, 5’-cyclic monophosphate. Biochemistry. 1968; 7(9):3231-9. DOI: https://doi.org/10.1021/bi00849a028

Nachlas MM, Margulies SI, Goldberg JD, Seligman AM. The determination of lactic dehydrogenase with a tetrazolium salt. Analytical biochemistry. 1960; 1(4- 5):317-26. DOI: https://doi.org/10.1016/0003-2697(60)90029-4