Interactions of HRLCMS-QTOF Detected Plant Metabolites of Abrus precatorius L. Seeds with EGFR and the Effect of Classically Detoxification Process

Jump To References Section

Authors

  • SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu ,IN
  • SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu ,IN
  • Captain Srinivasa Murthy Central Ayurveda Research Institute, CCRAS, Arumbakkam, Chennai - 600106, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i2/35698

Keywords:

Abrus precatorius, Docking, HRLCMS, Plant Metabolite Evaluation, Shodhana

Abstract

Abrus precatorius L. is one of the most important medicinal plants with toxic principles which has been reported for many cases of poisoning throughout the globe. Shodhana is an important technique in Ayurveda which includes a set of procedures to detoxify the toxic herbal raw drugs. Hence three varieties of unprocessed and shodhana processed Abrus precatorius L. seeds were chosen and the hydro alcoholic extracts were prepared by maceration. These extracts were subjected to HRLCMS-QTOF analysis and the receptor-specific action of all the major components selected with the cutoff range of more than 0.2x106 counts was analyzed with GLIDE (Schrodinger 2021-1, maestro v13.6) software. Totally 570 molecules were identified in HRLCMS, and 299 molecules were docked against EGFR downloaded from the RCSB database with the crystal structure of 5XDK. The HRLCMS has revealed the presence of many unknown compounds in extracts and the major compounds identified were Indoleacrylic acid, PABA, Galangin 3- [galactosyl-(1->4), Chrysoeriol 7-O-neohesperidoside, gallic acid, calendoflaside, etc. In docking studies, the glide scores of the ligands were compared with the standard ligand 8JK and it was found that the compounds present in the extracts have shown good binding scores in comparison with the standard ligand. It is concluded that the shodhana processed seed extracts show a wide range of phytochemical variation and a notable in silico docking score and hence the raw drug after shodhana can be considered promising for research and development of cancer management therapies.

Downloads

Download data is not yet available.

Published

2024-04-08

How to Cite

Vikram, E. N. T., Kamaraj, R., & Ilavarasan, R. (2024). Interactions of HRLCMS-QTOF Detected Plant Metabolites of <i>Abrus precatorius</i> L. Seeds with EGFR and the Effect of Classically Detoxification Process. Toxicology International, 31(2), 181–218. https://doi.org/10.18311/ti/2024/v31i2/35698
Received 2023-11-24
Accepted 2024-02-23
Published 2024-04-08

 

References

Abrus precatorius - an overview | ScienceDirect Topics [Internet]. www.sciencedirect.com. [cited 2023 Nov 24]. Available from: https://www.sciencedirect.com/topics/ biochemistry-genetics-and-molecular-biology/abrusprecatorius

Canada A and AF. Canadian Biodiversity Information Facility (CBIF) [Internet]. agriculture.canada.ca. 2021 [cited 2023 Nov 24]. Available from: http://www. cbif.gc.ca/eng/species-bank/canadian-poisonousplants- information-system/all-plants-scientific-name/ abrus-precatorius/?id=1370403266739%7C

Ramachandran J. Herbs of Siddha medicines: The first 3D book on herbs. Chennai: Murugan Pathippagam. 1998; 2.

Verma D, Tiwari SS, Srivastava S, Rawat A. Pharmacognostical evaluation and phytochemical standardization of Abrus precatorius L. seeds. Natural Product Sciences. 2011; 17(1):51-7.

Ravindra F. IPCS INCHEM, Abrus precatorius L. Available from: https://www.inchem.org/documents/pims/plant/ abruspre.htm#SectionTitle:3.3%20The%20toxin%28s%29

Maiden JH. The useful native plants of Australia: Including Tasmania. Sydney: Turner and Henderson. 1889. https:// doi.org/10.5962/bhl.title.120959 DOI: https://doi.org/10.5962/bhl.title.120959

Elizabeth MW. Major herbs of Ayurveda. Edinburgh: Churchill Livingstone. 2002. ISBN 9780443072031

Maurya SK, Seth A, Laloo D, Singh NK, Gautam DN, Singh AK. Sodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants. Anc Sci Life. 2015; 34(4):188-97. https:// doi.org/10.4103/0257-7941.160862 PMid:26283803 PMCid:PMC4535066 DOI: https://doi.org/10.4103/0257-7941.160862

Epidermal Growth Factor Receptor [Homo sapiens (human)] - Gene - NCBI [Internet]. Nih.gov. 2023. Available from: https://www.ncbi.nlm.nih.gov/gene?Cmd= DetailsSearch&Term=1956

Ma X, Liu X, Ou K, Zhang M, Gao L, Yang L. Advanced pancreatic cancer with KRAS wild-type and EGFR-sensitive mutation respond favourably to furmonertinib: A case report. Front Oncol 2023; 13:1151178. https://doi.org/10.3389/fonc.2023.1151178 PMid:37091175 PMCid:PMC10117981 DOI: https://doi.org/10.3389/fonc.2023.1151178

Shyamasundaracharya Vaidya, Rasayanasara, Shyamasundara Rasayanashala, Banaras, Paribhasha Prakarana, Verse 55-60. p. 67-8.

Shastri K. Rasatarangini of Sadanandsharma, Motilal Banarasidas, New Delhi, 2004. 22-765.

Anonymous. The Ayurvedic formulary of India Part-I. 2nd ed. Department of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (AYUSH), Ministry of Health and Family Welfare, Government of India, New Delhi, 2016.

Jafarzadeh L, Rafieian-Kopaei M, Samani RA, Asgari A. The effect of hydroalcoholic extract of Stachys lavandulifolia vahl on pregnant mice. EXCLI J. 2012; 11:357-62.

Laroze, Liza, Soto, Carmen, Zuñiga H, Maria. Phenolic antioxidants extraction from raspberry wastes assisted by enzymes. Electronic Journal of Biotechnology. 2010; 13:11- 2. https://doi.org/10.2225/vol13-issue6-fulltext-12 DOI: https://doi.org/10.2225/vol13-issue6-fulltext-12

Tourabi M, Metouekel A, Ghouizi AEL et al. Efficacy of various extracting solvents on phytochemical composition and biological properties of Mentha longifolia L. leaf extracts. Sci Rep. 2023; 13:18028. https://doi.org/10.1038/ s41598-023-45030-5 PMid:37865706 PMCid: PMC10590439

Antonio M, Carmen G, Wendu T, Iris L, Jose ASL. Chapter 3 - Maceration and fermentation: New technologies to increase extraction. In: Antonio M, editor. Red Wine Technology. Academic Press. 2019; 35-49. https://doi. org/10.1016/B978-0-12-814399-5.00003-7 DOI: https://doi.org/10.1016/B978-0-12-814399-5.00003-7

Ali A, Bashmil YM, Cottrell JJ, Suleria HAR, Dunshea FR. LC-MS/MS-QTOF Screening and identification of phenolic compounds from Australian-grown herbs and their antioxidant potential. Antioxidants. 2021; 10:1770. https://doi.org/10.3390/antiox10111770 PMid:34829641 PMCid: PMC8615083 DOI: https://doi.org/10.3390/antiox10111770

Mehta S, Kumar S, Marwaha RK, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, Mani V. Synthesis, molecular docking and biological potentials of new 2-(4-(2-chloroacetyl) piperazine-1-yl)-N-(2-(4- chlorophenyl)-4-oxoquinazolin-3(4H)-yl) acetamide derivatives. BMC Chem. 2019; 13(1):113. https://doi. org/10.1186/s13065-019-0629-0 PMid:31517312 PMCid: PMC6727350 DOI: https://doi.org/10.1186/s13065-019-0629-0

Zhong HA, Almahmoud S. Docking and selectivity studies of covalently bound janus kinase 3 inhibitors. Int J Mol Sci. 2023; 24:6023. https://doi.org/10.3390/ijms24076023 PMid:37047004 PMCid: PMC10094608 DOI: https://doi.org/10.3390/ijms24076023

Rajagopal K, Varakumar P, Baliwada A, Byran G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID- 19): an in silico approach. Futur J Pharm Sci. 2020; 6(1):104. https://doi.org/10.1186/s43094-020-00126-x PMid:33215042 PMCid: PMC7562761 DOI: https://doi.org/10.1186/s43094-020-00126-x

Garaniya N, Bapodra A. Ethno botanical and Phytopharmacological potential of Abrus precatorius L.: A review. Asian Pac J Trop Biomed. 2014; 4(Suppl 1):S27-34. https://doi.org/10.12980/APJTB.4.2014C1069 PMid:25183095 PMCid: PMC4025349 DOI: https://doi.org/10.12980/APJTB.4.2014C1069

Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen en Henegouwen P. The epidermal growth factor. Cell Biol Int. 1995; 19(5):413-30. https://doi.org/10.1006/ cbir.1995.1086 PMid:7640657 DOI: https://doi.org/10.1006/cbir.1995.1086

Ullrich LC, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984; 309:418-25. https://doi.org/10.1038/309418a0 PMid:6328312 DOI: https://doi.org/10.1038/309418a0

Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors Biochim. Biophys. Acta. 1987; 916: 220-6. https://doi. org/10.1016/0167-4838(87)90112-9 DOI: https://doi.org/10.1016/0167-4838(87)90112-9

Ward CW, Hoyne PA, Flegg RH. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumour necrosis factor receptor. Proteins. 1995; 22:141-53. https://doi.org/10.1002/prot.340220207 PMid:7567962 DOI: https://doi.org/10.1002/prot.340220207

Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010; 62(2): 90-9. https://doi. org/10.1016/j.phrs.2010.03.005 PMid:20380880 DOI: https://doi.org/10.1016/j.phrs.2010.03.005

Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer. 2014; 50(15):2570–82. https://doi.org/10.1016/j. ejca.2014.06.021 PMid:25091797 DOI: https://doi.org/10.1016/j.ejca.2014.06.021

Showing metabocard for Pallidol 3-glucoside (HMDB0036569) [Internet]. [cited 2023 Nov 21]. Available from: https://hmdb.ca/metabolites/ HMDB0036569#references

He S, Jiang L, Wu B, Pan Y, Sun C. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher. Biochemical and Biophysical Research Communications. 2009; 379(2):283-7. https://doi.org/10.1016/j. bbrc.2008.12.039 PMid:19101516 DOI: https://doi.org/10.1016/j.bbrc.2008.12.039

Gianfranco R, Camillo LM. Resveratrol: Biological activities and potential use in health and disease. 2019; 215- 26. https://doi.org/10.1007/978-3-030-04624-8_15 DOI: https://doi.org/10.1007/978-3-030-04624-8_15

Human metabolome database: Showing metabocard for ellagic acid (HMDB0002899) [Internet]. hmdb.ca. Available from: https://hmdb.ca/metabolites/HMDB0002899

Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, et al. Ellagic acid: A review of its natural sources, chemical stability, and therapeutic potential. Chen L, editor. Oxidative Medicine and Cellular Longevity. 2022; 2022:1-24. https://doi.org/10.1155/2022/8442734 PMid:35069979 PMCid: PMC8776447 DOI: https://doi.org/10.1155/2022/3848084

Human metabolome database: Showing metabocard for chrysoeriol 7-O-neohesperidoside (HMDB0304575) [Internet]. hmdb.ca. [cited 2023 Nov 23]. Available from: https://hmdb.ca/metabolites/HMDB0304575

Giuseppe G, Corrado C, Claudia G, Ersilia B, Giovanni T and Ugo L. Flavonoid glycosides in bergamot juice (Citrus bergamia Risso). J Agric Food Chem. 2006; 54(11):3929-35. https://doi.org/10.1021/jf060348z PMid:16719517

Human metabolome database: Showing metabocard for 6-beta-D-Glucopyranosyl-4’,5-dihydroxy-3’,7- dimethoxyflavone (HMDB0037568) [Internet]. hmdb. ca. [cited 2023 Nov 23]. Available from: https://hmdb.ca/ metabolites/HMDB0037568#biological_properties

PubChem. 7,3’-Di-O-methylisoorientin [Internet]. pubchem.ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/7_3_- Di-O-methylisoorientin

Fernandes DC, Martins BP, Silva GPD, Fonseca END, Santos SVM, Velozo LSM, Gayer CRM, Sabino KCC, Coelho MGP. Echinodorus macrophyllus fraction with a high level of flavonoid inhibits peripheral and central mechanisms of nociception. J Tradit Complement Med. 2021; 12(2):123-30. https://doi.org/10.1016/j.jtcme.2021.07.001 PMid:35528477 PMCid: PMC9072821 DOI: https://doi.org/10.1016/j.jtcme.2021.07.001

Showing compound Scoparin 2’-glucoside (FDB018239) - FooDB [Internet]. foodb.ca. [cited 2023 Nov 23]. Available from: https://foodb.ca/compounds/FDB018239

Barreca D, Gattuso G, Laganà G, Leuzzi U, Bellocco E. C- and O-glycosyl flavonoids in Sanguinello and Tarocco blood orange (Citrus sinensis (L.) Osbeck) juice: Identification and influence on antioxidant properties and acetylcholinesterase activity. Food Chem. 2016; 196:619- 27. https://doi.org/10.1016/j.foodchem.2015.09.098 PMid:26593535 DOI: https://doi.org/10.1016/j.foodchem.2015.09.098

Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G. Flavonoid profile and radical-scavenging activity of Mediterranean sweet lemon (Citrus limetta Risso) juice. Food Chem. 2011; 129(2):417-22. https://doi.org/10.1016/j.foodchem.2011.04.093 PMid:30634246 DOI: https://doi.org/10.1016/j.foodchem.2011.04.093

Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae mart. (acai). J Agric Food Chem. 2006; 54(22):8598-603. https://doi.org/10.1021/jf060976g PMid:17061839 DOI: https://doi.org/10.1021/jf060976g

Johann S, Oliveira VL, Pizzolatti MG, Schripsema J, Braz- Filho R, Branco A, Smânia A Jr. Antimicrobial activity of wax and hexane extracts from Citrus spp. peels. Mem Inst Oswaldo Cruz. 2007; 102(6):681-5. https://doi.org/10.1590/ S0074-02762007000600004 PMid:17923995 DOI: https://doi.org/10.1590/S0074-02762007005000087

Gattuso G, Caristi C, Gargiulli C, Bellocco E, Toscano G, Leuzzi U. Flavonoid glycosides in bergamot juice (Citrus bergamia Risso). J Agric Food Chem. 2006; 54(11):3929-35. https://doi.org/10.1021/jf060348z PMid:16719517 DOI: https://doi.org/10.1021/jf060348z

Barreca D, Bellocco E, Leuzzi U, Gattuso G. First evidence of C- and O-glycosyl flavone in blood orange (Citrus sinensis (L.) Osbeck) juice and their influence on antioxidant properties. Food Chem. 2014; 149:244-52. https://doi. org/10.1016/j.foodchem.2013.10.096 PMid:24295703 DOI: https://doi.org/10.1016/j.foodchem.2013.10.096

Showing Compound cis-Miyabenol C (FDB021540) - FooDB [Internet]. foodb.ca. [cited 2023 Nov 23]. Available from: https://foodb.ca/compounds/FDB021540

PubChem. cis-Miyabenol C [Internet]. pubchem.ncbi. nlm.nih.gov. [cited 2023 Nov 23]. Available from: https:// pubchem.ncbi.nlm.nih.gov/compound/cis-Miyabenol-C

Sáez V, Pastene E, Vergara C, Mardones C, Hermosín- Gutiérrez I, Gómez-Alonso S, Gómez MV, Theoduloz C, Riquelme S, von Baer D. Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chem. 2018; 265:101-10. https://doi.org/10.1016/j. foodchem.2018.05.050 PMid:29884360 DOI: https://doi.org/10.1016/j.foodchem.2018.05.050

Human metabolome database: Showing metabocard for PIP (18:1(9Z)/16:0) (HMDB0009970) [Internet]. hmdb. ca. [cited 2023 Nov 23]. Available from: https://hmdb.ca/ metabolites/HMDB0009970

PubChem. Phlorizin [Internet]. pubchem.ncbi.nlm.nih. gov. Available from: https://pubchem.ncbi.nlm.nih.gov/ compound/Phlorizin

Sergios G, Meier A, Jilani K, Lang E, Zelenak C, Qadri SM, et al. Phlorhizin protects against erythrocyte cell membrane scrambling. Journal of Agricultural and Food Chemistry. 2011; 59(15):8524-30. https://doi.org/10.1021/jf201938d PMid:21707031 DOI: https://doi.org/10.1021/jf201938d

Summary tables of biological tests: Volume 6 No. 6: December 1954 [Internet]. National Academies Press. Washington, D.C.: National Academies Press; 1954 [cited 2023 Nov 24]. Available from: https://nap. nationalacademies.org/catalog/26956/summary-tables-ofbiological- tests-volume-6-no-6-december.

PubChem. Phloroacetophenone 6’-[xylosyl-(1->6)- glucoside] [Internet]. pubchem.ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi.nlm. nih.gov/compound/131751293

PubChem. Paeonolide [Internet]. pubchem.ncbi.nlm.nih. gov. [cited 2023 Nov 23]. Available from: https://pubchem. ncbi.nlm.nih.gov/compound/Paeonolide

Park KR, Lee JY, Cho M, Hong JT, Yun HM. Paeonolide as a novel regulator of core-binding factor subunit Alpha-1 in bone-forming cells. Int J Mol Sci. 2021; 22(9):4924. https:// doi.org/10.3390/ijms22094924 PMid:34066458 PMCid: PMC8125120 DOI: https://doi.org/10.3390/ijms22094924

PubChem. 2-(3-Ethyl-5-(4-methoxyphenyl)-1H-pyrazol- 4-yl) phenol [Internet]. pubchem.ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi.nlm. nih.gov/compound/257428

PubChem. Biorobin [Internet]. pubchem.ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi. nlm.nih.gov/compound/Biorobin

Ayachi A, Ben Younes A, Ben Ammar A, Bouzayani B, Samet S, Siala M, Trigui M, Treilhou M, Téné N, Mezghani-Jarraya R. Effect of the harvest season of Anthyllis henoniana stems on antioxidant and antimicrobial activities: Phytochemical profiling of their ethyl acetate extracts. Molecules. 2023; 28(9):3947. https://doi.org/10.3390/molecules28093947 PMid:37175357 PMCid: PMC10180434 DOI: https://doi.org/10.3390/molecules28093947

PubChem. Kaempferol-3-O-rutinoside [Internet]. pubchem.ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ Kaempferol-3-O-rutinoside

Yu S, Guo Q, Jia T, Zhang X, Guo D, Jia Y, Li J, Sun J. Mechanism of action of nicotiflorin from Tricyrtis maculata in the treatment of acute myocardial infarction: From network pharmacology to experimental pharmacology. Drug Des Devel Ther. 2021; 15:2179-91. https://doi.org/10.2147/DDDT.S302617 PMid:34079221 PMCid: PMC8164440 DOI: https://doi.org/10.2147/DDDT.S302617

Zhao J, Zhang S, You S, Liu T, Xu F, Ji T, Gu Z. Hepatoprotective effects of nicotiflorin from Nymphaea candida against Concanavalin A-Induced and D-Galactosamine-induced liver injury in mice. Int J Mol. Sci. 2017; 18:587. https:// doi.org/10.3390/ijms18030587 PMid:28282879 PMCid: PMC5372603 DOI: https://doi.org/10.3390/ijms18030587

Human metabolome database: Showing metabocard for Biliverdin (HMDB0001008) [Internet]. hmdb.ca. Available from: https://hmdb.ca/metabolites/HMDB0001008

Chen D, Brown J, Kawasaki Y, Bommer JC, Takemoto JY. Scalable production of biliverdin IXα by Escherichia coli. BMC Biotechnology. 2012;12(1). https://doi.org/10.1186/1472- 6750-12-89 PMid:23176158 PMCid: PMC3534565 DOI: https://doi.org/10.1186/1472-6750-12-89

PubChem. 1-Hydroxyisoquinoline [Internet]. pubchem. ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1- Hydroxyisoquinoline

Human metabolome database: Showing metabocard for Isorhamnetin 3-O-[b-D-glucopyranosyl-(1->2)-a-Lrhamnopyranoside] (HMDB0037085) [Internet]. hmdb. ca. [cited 2023 Nov 23]. Available from: https://hmdb.ca/ metabolites/HMDB0037085

Guo RZ, Liu X, Gao W, Dong X, Fanali S, Li P, et al. A strategy for screening antioxidants in Ginkgo biloba extract by comprehensive two-dimensional ultra-high performance liquid chromatography. Journal of Chromatography A. 2015; 1422:147-54. https://doi.org/10.1016/j.chroma.2015.10.008 PMid:26477520 DOI: https://doi.org/10.1016/j.chroma.2015.10.008

Showing Compound Calendoflaside (FDB018246) - FooDB [Internet]. foodb.ca. [cited 2023 Nov 23]. Available from: https://foodb.ca/compounds/FDB018246

Das P, Majumder R, Mandal M, Basak P. In-silico approach for identification of effective and stable inhibitors for COVID-19 main protease (Mpro) from flavonoid-based phytochemical constituents of Calendula officinalis. Journal of Biomolecular Structure and Dynamics. 2020; 1-16. https://doi.org/10.1080/07391102.2020.1796799 PMid:32705952 PMCid: PMC7441784 DOI: https://doi.org/10.1080/07391102.2020.1796799

Human metabolome database: Showing metabocard for Indoleacrylic acid (HMDB0000734) [Internet]. hmdb. ca. [cited 2023 Nov 23]. Available from: https://hmdb.ca/ metabolites/HMDB0000734

Liu D, Zhang S, Li S, Zhang Q, Cai Y, Li P, et al. Indoleacrylic acid produced by Parabacteroides distasonis alleviates type 2 diabetes via activation of AhR to repair the intestinal barrier. BMC Biology [Internet]. 2023 Apr 18 [cited 2023 Oct 2]; 21(1). https://doi.org/10.1186/s12915-023-01578-2 PMid:37072819 PMCid: PMC10114473 DOI: https://doi.org/10.1186/s12915-023-01578-2

Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O’Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017; 22(1):25-37. e6. https://doi.org/10.1016/j.chom.2017.06.007 PMid:28704649 PMCid: PMC5672633 DOI: https://doi.org/10.1016/j.chom.2017.06.007

PubChem. Prunetin [Internet]. pubchem.ncbi.nlm.nih.gov. [cited 2023 Nov 23]. Available from: https://pubchem.ncbi. nlm.nih.gov/compound/Prunetin.

Most read articles by the same author(s)