Glucocorticoid-Induced Dose-Dependent Reproductive Impairments in Male Albino Rat

Jump To References Section

Authors

  • Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur - 495009, Chhattisgarh ,IN
  • Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur - 495009, Chhattisgarh ,IN

DOI:

https://doi.org/10.18311/jer/2023/34312

Keywords:

Dexamethasone, Epididymis, Male Fertility, Seminiferous Tubule, Testis

Abstract

The present study is aimed at elucidating the effect of different doses of Dexamethasone (DEX) on testis and epididymis of male Wistar rats. Thirty-six rats were divided into six groups, each containing six rats: one control (CON), and five groups of rats treated with five (30 μg, 40 μg, 50 μg, 60 μg, 70 μg/100 g body weight) doses of dexamethasone intraperitoneally (i.p.) for twenty-one days. The results revealed a dose-dependent decrease in testes and epididymis weight. DEX-treated rats evidenced significant increase in TBARS levels, this being the highest in 70 μg/100 g body weight (bw) which could be a consequence of the highest level of free radical generation. The activity level of antioxidative enzymes Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH), and protein content significantly declined in dexamethasone-treated rats in a dose-dependent manner. Histological observation revealed different degrees of germ cell degeneration/alterations in testis and epididymis The present finding suggests that exposure to dexamethasone (70 μg/100 g bw) can potentially lead to severe impairments in male reproductive tissues (testis and epididymis) structure and function, which may consequently lead to male infertility.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-17

How to Cite

Patel, S., & Rai, S. (2023). Glucocorticoid-Induced Dose-Dependent Reproductive Impairments in Male Albino Rat. Journal of Endocrinology and Reproduction, 27(2), 99–108. https://doi.org/10.18311/jer/2023/34312

Issue

Section

Original Research

 

References

Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. Journal of Clinical and Diagnostic Research: JCDR. 2017; 11(5):IE01. https://doi.org/10.7860/ JCDR/2017/23927.9886 PMid:28658802 PMCid:PMC5483704

Iuchi T, Akaike M, Mitsui T. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circulation Research. 2003; 92(1):81-7. https://doi.org/10.1161/01.RES.0000050588.35034.3C PMid:12522124 DOI: https://doi.org/10.1161/01.RES.0000050588.35034.3C

Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testis. Molecular Mechanisms in Spermatogenesis. 2008; 154- 71. https://doi.org/10.4161/oxim.1.1.6843 PMid:19794904 PMCid:PMC2715191 DOI: https://doi.org/10.1007/978-0-387-09597-4_9

Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000; 21(1):55-89. https://doi. org/10.1210/edrv.21.1.0389 PMid:10696570 DOI: https://doi.org/10.1210/edrv.21.1.0389

Findling JW, Raff H, Aron DC. The low-dose dexamethasone suppression test: A reevaluation in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2004; 89:1222–6. https://doi.org/10.1210/jc.2003-030207 PMid:15001614 DOI: https://doi.org/10.1210/jc.2003-030207

Queckenberg C, Wachall B, Erlinghagen V. Pharmacokinetics, pharmacodynamics, and comparative bioavailability of single, oral 2-mg doses of dexamethasone liquid and tablet formulations: A randomized, controlled, crossover study in healthy adult volunteers. Clin Ther. 2011; 33(11):1831-41. https://doi. org/10.1016/j.clinthera.2011.10.006 PMid:22047811 DOI: https://doi.org/10.1016/j.clinthera.2011.10.006

Oksay T, Naziroglu M, Dogan S. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia. 2014; 46:65– 72. https://doi.org/10.1111/and.12044 PMid:23145464 DOI: https://doi.org/10.1111/and.12044

Yazawa H, Sasagawa I, Nakada T. Apoptosis of testicular germ cells induced by exogenous glucocorticoidinrats. Hum Reprod. 2000; 15(9):1917-20. https://doi.org/10.1093/humrep/15.9.1917 PMid:10966986

Lowry OH, Rosebrough NJ, Farr AL, Rose J. Protein measurement with the folin phenol reagent. J Biol Chem. 1951; 193:265-75. https://doi.org/10.1016/ S0021-9258(19)52451-6PMid:14907713 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem.1979; 95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3 PMid:36810 DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1983; 21:192-205.

Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952; 195:133-140. https://doi.org/10.1016/S0021-9258(19)50881-X PMid:14938361 DOI: https://doi.org/10.1016/S0021-9258(19)50881-X

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25:192-205. https://doi.org/10.1590/S1516-8913201500022 DOI: https://doi.org/10.1016/0003-2697(68)90092-4

Rodriguez C, Mayo JC, Sainz RM. Regulation of antioxidant enzymes: A significant role for melatonin. Journal of pineal research. 2004; 36(1):1-9. https://doi.org/10.1046/j.1600-079X.2003.00092.x PMid:14675124 DOI: https://doi.org/10.1046/j.1600-079X.2003.00092.x

Sadeghzadeh F, Mehranjani MS, Mahmoodi M. Vitamin C ameliorates the adverse effects of dexamethasone on sperm motility, testosterone level, and spermatogenesis indexes in mice. Hum Ex Toxicol. 2019; 38(4):409418. ht tps://doi .org/10.1177/0960327118816137 PMid:30526067 DOI: https://doi.org/10.1177/0960327118816137

Mukherjee A, Haldar C, Vishwas DK. Melatonin prevents dexamethasone‐induced testicular oxidative stress and germ cell apoptosis in golden hamster, Mesocricetus auratus. Andrologia. 2015; 47(8):920-31. https://doi. org/10.1111/and.12357 PMid:25277062 DOI: https://doi.org/10.1111/and.12357

Page KC, Sottas CM, Hardy MP. Prenatal exposure to dexamethasone alters Leydig cell steroidogenic capacity in immature and adult rats. J Androl. 2001; 22(6):973- 80. https://doi.org/10.1002/j.1939-4640.2001.tb03438.x PMid:11700862 DOI: https://doi.org/10.1002/j.1939-4640.2001.tb03438.x

Kasahara E, Sato EF, Miyoshi M. Role of oxidative stress in germ cell apoptosis induced by di (2-ethylhexyl) phthalate. Biochem J. 2002; 365:849–56. https://doi.org/10.1042/bj20020254 PMid:11982482 PMCid:PMC1222724 DOI: https://doi.org/10.1042/bj20020254

Ma A, Yang X, Wang Z. Adult exposure to diethylstilbestrol induces spermatogenic cell apoptosis in vivo through increased oxidative stress in male hamster. Reprod Toxicol. 2008; 25:367–73. https://doi.org/10.1016/j. reprotox.2007.12.007 PMid:18296022 DOI: https://doi.org/10.1016/j.reprotox.2007.12.007

Payne AH, Sha LL. Multiple mechanisms for regulation of 3β-hydroxy steroid dehydrogenase/delta5 delta4 isomerase, 17 alpha hydroxylase/C17-20lyase cytochrome P450, P450 messenger ribonucleic acid levels in primary cultures of mouse Leydig cells. Endocrinology. 1991; 129:1429-35. https://doi.org/10.1210/endo-129- 3-1429PMid:1874181 DOI: https://doi.org/10.1210/endo-129-3-1429

Hales LDB, Payne AH. Glucocorticoid-mediated repression of P450scc Mrna and de novo synthesis in cultured Leydig cells. Endocrinology. 1989; 124:2099-104. https:// doi.org/10.1210/endo-124-5-2099 PMid:2539967 DOI: https://doi.org/10.1210/endo-124-5-2099

Badrinarayanan R, Rengarjan S, Nthya P, Balasubramanian K. Corticosterone impairs the mRNA expression and activity of 3β and 17β hydroxysteroid dehydrogenases in adult rat Leydig cells. Biochem Cell Biol. 2006; 84:745-54. https://doi.org/10.1139/o06-074 PMid:17167538 DOI: https://doi.org/10.1139/o06-074

Yazawa H, Sasagawa I, Nakada T. Apoptosis of testicular germ cells induced by exogenous glucocorticoid in rats. Human Reprod. 2000; 15(9):1917-20. https://doi. org/10.1093/humrep/15.9.1917 PMid:10966986 DOI: https://doi.org/10.1093/humrep/15.9.1917

Orazizadeh M, Khorsandi, LS, Hashemitabar M. Toxic effects of dexamethasone on mouse testicular germ cells. Andrologia. 2010; 42(4):247-53. https://doi. org/10.1111/j.1439-0272.2009.00985.x PMid:20629648 DOI: https://doi.org/10.1111/j.1439-0272.2009.00985.x

Gao HB, Tong MH, Hu Y Q. Glucocorticoid induces apoptosis in rat Leydig cells. Endocrinology. 2002; 143(1):130138. https://doi.org/10.1210/endo.143.1.8604 PMid:11751601 DOI: https://doi.org/10.1210/endo.143.1.8604

Makker K, Agarwal A, Sharma R. Oxidative stress and male infertility. Indian J Med Res. 2009; 129:357–67.

Choudhary R, Chawala VK, Soni ND. Oxidative stress and role of antioxidants in male infertility. Pak J Physiol. 2010; 6:54–9.

Calvin HI, Cooper GW, Wallace E. Evidence that selenium in rat sperm is associated with a cystine rich structural protein of the mitochondrial capsule. Gamete Res. 1981; 4:139–49. https://doi.org/10.1002/ mrd.1120040208 DOI: https://doi.org/10.1002/mrd.1120040208

Valko M, Rhodes CJ, Moncol J, Izakovic M. Free radicals, metal and antioxidants in oxidative stress induced cancer. Chem Biol Interact. 2006; 160:1–40. https://doi. org/10.1016/j.cbi.2005.12.009 PMid:16430879 DOI: https://doi.org/10.1016/j.cbi.2005.12.009

Mathur PP, D’cruz, SC. The effect of environmental contaminants on testicular function. Asian J Androl. 2011; 13(4):585. https://doi.org/10.1038/aja.2011.40 PMid:21706039 PMCid:PMC3739630 DOI: https://doi.org/10.1038/aja.2011.40

Poljšak B, Fink R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxidative Medicine and Cellular Longevity. 2014; 671539. https://doi.org/10.1155/2014/671539 PMid:25140198 PMCid:PMC4129148 DOI: https://doi.org/10.1155/2014/671539