Gonadotropin Receptor Cross-Talk and Altered Functions in Gonadal and Non-Gonadal Tissues

Jump To References Section

Authors

  • Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, New Delhi – 110021, Delhi ,IN
  • Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, New Delhi – 110021, Delhi ,IN

DOI:

https://doi.org/10.18311/jer/2023/34991

Keywords:

FSHR, Granulosa Cells, LHR, LHCGR, Theca Cells

Abstract

Reproduction depends on the responses of gonadotropins through their specific receptors. The gonadotropin family has three members; Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), and Human Chorionic Gonadotropin (hCG). These glycoprotein hormones comprise two subunits, an identical α-subunit and a hormone-specific-β subunit. Their cognate receptors (FSHR and LHCGR) are two adrenergic receptor-like family A/rhodopsin-like G-Protein Coupled Receptors (GPCRs) with structurally distinct ligand binding domains. The hCG binds to LHCGR but has a longer half-life and higher affinity to LHCGR. The expression of FSHR and LHCGR is observed in both gonadal and nongonadal cells. In this review, we will be emphasizing the differential expression of gonadotropin receptors in different cells of the human body, their specific responses through cross-talk, and how a defect in the expression and activity of FSHR and LHCGR may alter the responses of FSH and LH/hCG leading to diseases like PCOS, cancer and metabolic disorders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-12

How to Cite

Singh, R., & Pathak, A. (2023). Gonadotropin Receptor Cross-Talk and Altered Functions in Gonadal and Non-Gonadal Tissues. Journal of Endocrinology and Reproduction, 27(3), 169–177. https://doi.org/10.18311/jer/2023/34991

Issue

Section

Review Article Presented at SRBCE 2023

 

References

Christin-Maitre S, Vasseur C, Fauser B, Bouchard P. Bioassays of gonadotropins. Methods. 2000; 21(1):51-7. https://doi.org/10.1006/meth.2000.0974 DOI: https://doi.org/10.1006/meth.2000.0974

Casarini L, Simoni M. Recent advances in understanding gonadotropin signaling. Fac Rev. 2021; 10:41. https://doi.org/10.12703/r/10-41 DOI: https://doi.org/10.12703/r/10-41

Casarini L, Crépieux P. Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne). 2019; 10:305. https://doi.org/10.3389/fendo.2019.00305 DOI: https://doi.org/10.3389/fendo.2019.00305

Menon KMJ, Menon B. Structure, function and regulation of gonadotropin receptors - A perspective. Mol Cell Endocrinol. 2012; 356:88-97. https://doi.org/10.1016/j.mce.2012.01.021 DOI: https://doi.org/10.1016/j.mce.2012.01.021

Menon KMJ, Clouser CL, Nair AK. Gonadotropin receptors role of post-translational modifications and post-transcriptional regulation. Endocrine. 2005; 26(3):249-57. https://doi.org/10.1385/ENDO:26:3:249 DOI: https://doi.org/10.1385/ENDO:26:3:249

Ulloa-Aguirre A, Crépieux P, Poupon A, Maurel MC, Reiter E. Novel pathways in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab Disord. 2011; 12(4):259-74. https://doi.org/10.1007/s11154-0119176-2 DOI: https://doi.org/10.1007/s11154-011-9176-2

Miller WL, Strauss JF. Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR p. J Steroid Biochem Mol Biol. 1999; 69(1-6):13141. https://doi.org/10.1016/S0960-0760(98)00153-8 DOI: https://doi.org/10.1016/S0960-0760(98)00153-8

Gheorghiu ML. Actualities in mutations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) receptors. Acta Endocrinol (Buchar). 2019; 5(1):139-42. https://doi.org/10.4183/aeb.2019.139 DOI: https://doi.org/10.4183/aeb.2019.139

Chahal N, Geethadevi A, Kaur S, et al. Direct impact of gonadotropins on glucose uptake and storage in preovulatory granulosa cells: Implications in the pathogenesis of polycystic ovary syndrome. Metabolism. 2021; 115. https://doi.org/10.1016/j.metabol.2020.154458 DOI: https://doi.org/10.1016/j.metabol.2020.154458

Anjali G, Kaur S, Lakra R, et al. FSH stimulates IRS-2 expression in human granulosa cells through cAMP/ SP1, an inoperative FSH action in PCOS patients. Cell Signal. 2015; 27(12):2452-66. https://doi.org/10.1016/j.cellsig.2015.09.011 DOI: https://doi.org/10.1016/j.cellsig.2015.09.011

Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genomewide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011; 43(1):55-9. https://doi.org/10.1038/ng.732 DOI: https://doi.org/10.1038/ng.732

Day FR, Hinds DA, Tung JY, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015; 6. https://doi.org/10.1038/ncomms9464 DOI: https://doi.org/10.1038/ncomms9464

Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genomewide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012; 44(9):10205. https://doi.org/10.1038/ng.2384 DOI: https://doi.org/10.1038/ng.2384

Hwang JY, Lee EJ, Jin Go M, Sung YA, Lee HJ, Kwak SH, et al. Genome-wide association study identifies GYS2 as a novel genetic factor for polycystic ovary syndrome through obesity-related condition. J Hum Genet. 2012; 57(10):660-4. https://doi.org/10.1038/jhg.2012.92 DOI: https://doi.org/10.1038/jhg.2012.92

Singh R, Kaur S, Yadav S, Bhatia S. Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends Endocrinol Metab. 2023; 34(4):194-215. https://doi.org/10.1016/j.tem.2023.02.002 DOI: https://doi.org/10.1016/j.tem.2023.02.002

Richard CAH, Creinin MD, Kubik CJ, DeLoia JA. Enzymatic removal of asparagine-linked carbohydrate chains from heterodimer human chorionic gonadotrophin and effect on bioactivity. Reprod Fertil Dev. 2007; 19(8):933-46. https://doi.org/10.1071/RD07077 DOI: https://doi.org/10.1071/RD07077

Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, et al. Human Luteinizing Hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci Rep. 2017; 7(1). https://doi.org/10.1038/s41598-017-01078-8 DOI: https://doi.org/10.1038/s41598-017-01078-8

Huhtaniemi IT, Catt KJ. Differential binding affinities of rat testis Luteinizing Hormone (LH) receptors for human chorionic gonadotropin, human LH, and ovine LH. Endocrinology. 1981; 108(5):1931-8. https://doi.org/10.1210/endo-108-5-1931 DOI: https://doi.org/10.1210/endo-108-5-1931

Müller T, Gromoll J, Simoni M. Absence of exon 10 of the human Luteinizing Hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action. J Clin Endocrinol Metab. 2003; 88(5):2242-9. https://doi.org/10.1210/jc.2002-021946 DOI: https://doi.org/10.1210/jc.2002-021946

Grzesik P, Teichmann A, Furkert J, Rutz C, Wiesner B, Kleinau G, et al. Differences between lutropin-mediated and choriogonadotropin-mediated receptor activation. FEBS J. 2014; 281(5):1479-2. https://doi.org/10.1111/febs.12718 DOI: https://doi.org/10.1111/febs.12718

Grzesik P, Kreuchwig A, Rutz C, Furkert J, Wiesner B, Schuelein R, et al. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor’s extracellular hinge region. Front Endocrinol (Lausanne). 2015; 6. https://doi.org/10.3389/fendo.2015.00140 DOI: https://doi.org/10.3389/fendo.2015.00140

Yamoto M, Shima K, Nakano R. Gonadotropin receptors in human ovarian follicles and corpora lutea throughout the menstrual cycle. Horm Res. 1992; 37 Suppl 1:5-11. https://doi.org/10.1159/000182335 DOI: https://doi.org/10.1159/000182335

Minegishi T, Nakamura K, Takakura Y, Ibuki Y, Igarashi M, Minegish T. Cloning and sequencing of human FSH receptor cDNA. Biochem Biophys Res Commun. 1991; 175(3):1125-30. https://doi.org/10.1016/0006291X(91)91682-3 DOI: https://doi.org/10.1016/0006-291X(91)91682-3

Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, et al. Impairing Follicle Stimulating Hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA. 1998; 95(23):13612-17. https://doi.org/10.1073/pnas.95.23.13612 DOI: https://doi.org/10.1073/pnas.95.23.13612

Kishi H, Minegishi T, Tano M, Kameda T, Ibuki Y, Miyamoto K. The effect of activin and FSH on the differentiation of rat granulosa cells. FEBS Lett. 1998; 422(2):274-8. https://doi.org/10.1016/S00145793(98)00023-4 DOI: https://doi.org/10.1016/S0014-5793(98)00023-4

Kishi H, Kitahara Y, Imai F, Nakao K, Suwa H. Expression of the gonadotropin receptors during follicular development. Reprod Med Biol. 2017; 17(1):11-19. https://doi.org/10.1002/rmb2.12075 DOI: https://doi.org/10.1002/rmb2.12075

Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Investig. 1998; 101(12): 2622-9. https://doi.org/10.1172/JCI2081 DOI: https://doi.org/10.1172/JCI2081

Weil S, Vendola K, Zhou J, Bondy CA. androgen and folliclestimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999; 84(8):2951-56. https://doi.org/10.1210/jcem.84.8.5929 DOI: https://doi.org/10.1210/jcem.84.8.5929

Orisaka M, Jiang JY, Orisaka S, Kotsuji F, Tsang BK. Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen bio-synthesis. Endocrinology. 2009; 150(6):2740-8. https://doi.org/10.1210/en.2008-1536 DOI: https://doi.org/10.1210/en.2008-1536

Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, et al. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol. 2006; 20(10):2456-68. https://doi.org/10.1210/me.2005-0357 DOI: https://doi.org/10.1210/me.2005-0357

Latronico AC, Arnhold IJP. Gonadotropin resistance. Endocr Dev. 2013; 24:25-32. https://doi.org/10.1159/000342496 DOI: https://doi.org/10.1159/000342496

Gougeon A. Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr Rev. 1996; 17(2):121-55. https://doi.org/10.1210/edrv-17-2121 DOI: https://doi.org/10.1210/edrv-17-2-121

Yung Y, Aviel-Ronen S, Maman E, Rubinstein N, Avivi C, Orvieto R, et al. Tel Hashomer. localization of Luteinizing Hormone receptor protein in the human ovary. Mol Hum Reprod. 2014; 20(9):844-9. https://doi.org/10.1093/molehr/gau041 DOI: https://doi.org/10.1093/molehr/gau041

Zheng M, Shi H, Segaloff DL, Van Voorhis BJ. Expression and localization of Luteinizing Hormone receptor in the female mouse reproductive tract. Biol Reprod. 2001; 64(1):179-87. https://doi.org/10.1093/biolreprod/64.1.179 DOI: https://doi.org/10.1093/biolreprod/64.1.179

Minegishi T, Hirakawa T, Kishi H, Abe K, Abe Y, Mizutani T, et al. A role of insulin-like growth factor I for follicle-stimulating hormone receptor expression in rat granulosa cells. Biol Reprod. 2000; 62(2):325-33.

https://doi.org/10.1095/biolreprod62.2.325 DOI: https://doi.org/10.1095/biolreprod62.2.325

Shimada M, Yanai Y, Okazaki T, Yamashita Y, Sriraman V, Wilson MC, et al. Synaptosomal-associated protein 25 gene expression is hormonally regulated during ovulation and is involved in cytokine/chemokine exocytosis from granulosa cells. Mol Endocrinol. 2007; 21(10):2487-502. https://doi.org/10.1210/me.20070042 DOI: https://doi.org/10.1210/me.2007-0042

Gorospe WC, Spangelo BL. Interleukin-6 production by rat granulosa cells in vitro: Effects of cytokines, follicle-stimulating hormone, and cyclic 3’,5’-adenosine monophosphate. Biol Reprod.1993; 48(3):538-43. https://doi.org/10.1095/biolreprod48.3.538 DOI: https://doi.org/10.1095/biolreprod48.3.538

Stilley JA, Christensen DE, Dahlem KB, Guan R, Santillan DA, England SK, et al. FSH Receptor (FSHR) expression in human extragonadal reproductive tissues and the developing placenta, and the impact of its deletion on pregnancy in mice. Biol Reprod. 2014; 91(3):74, 1–15. https://doi.org/10.1095/biolreprod.114.118562 DOI: https://doi.org/10.1095/biolreprod.114.118562

Ponikwicka-Tyszko D, Chrusciel M, Stelmaszewska J, Bernaczyk P, Sztachelska M, Sidorkiewicz I, et al. Functional expression of FSH receptor in endometriotic lesions. J Clin Endocrinol Metab. 2016; 101(7):2892-904. https://doi.org/10.1210/jc.2016-1014 DOI: https://doi.org/10.1210/jc.2016-1014

Lizneva D, Rahimova A, Kim SM, Atabiekov I, Javaid S, Alamoush B, et al. FSH beyond fertility. Front Endocrinol (Lausanne). 2019; 10. https://doi.org/10.3389/fendo.2019.00136 DOI: https://doi.org/10.3389/fendo.2019.00136

Ji Y, Liu P, Yuen T, Haider S, He J, Romero R, et al. Epitopespecific monoclonal antibodies to FSHβ increase bone mass. Proc Natl Acad Sci USA. 2018; 115(9):2192-7. https://doi.org/10.1073/pnas.1718144115 DOI: https://doi.org/10.1073/pnas.1718144115

Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, et al. FSH directly regulates bone mass. Cell. 2006; 125(2):247-60. https://doi.org/10.1016/j.cell.2006.01.051 DOI: https://doi.org/10.1016/j.cell.2006.01.051

Wang N, Shao H, Chen Y, Xia F, Chi C, Li Q, et al. Follicle-stimulating hormone, its association with cardiometabolic risk factors, and 10-year risk of cardiovascular disease in postmenopausal women. J Am Heart Assoc. 2017; 6(9). https://doi.org/10.1161/JAHA.117.005918 DOI: https://doi.org/10.1161/JAHA.117.005918

Chin KY. The relationship between follicle-stimulating hormone and bone health: alternative explanation for bone loss beyond oestrogen? Int J Med Sci. 2018; 15(12):1373-83. https://doi.org/10.7150/ijms.26571 DOI: https://doi.org/10.7150/ijms.26571

Feng Y, Zhu S, Antaris AL, Chen H, Xiao Y, Lu X, et al. Live imaging of follicle stimulating hormone receptors in gonads and bones using near Infrared II fluorophore. Chem Sci. 2017; 8(5):3703-11. https://doi.org/10.1039/C6SC04897H DOI: https://doi.org/10.1039/C6SC04897H

Liu XM, Chan HC, Ding GL, Cai J, Song Y, Wang TT, et al. FSH regulates fat accumulation and redistribution in aging through the Gαi/Ca2+/CREB pathway. Aging Cell. 2015; 14(3):409-20. https://doi.org/10.1111/acel.12331 DOI: https://doi.org/10.1111/acel.12331

Planeix F, Siraj MA, Bidard FC, Robin B, Pichon C, Sastre-Garau X, et al. Endothelial follicle-stimulating hormone receptor expression in invasive breast cancer and vascular remodeling at tumor periphery. J Exp Clin Cancer Res. 2015; 34(1). https://doi.org/10.1186/s13046-015-0128-7 DOI: https://doi.org/10.1186/s13046-015-0128-7

Radu A, Pichon C, Camparo P, Antoine M, Allory Y, Couvelard A, et al. Expression of Follicle-Stimulating Hormone Receptor in tumor blood vessels. N Engl J Med. 2010; 363(17):1621-30. https://doi.org/10.1056/NEJMoa1001283 DOI: https://doi.org/10.1056/NEJMoa1001283

Pawlikowski M, Winczyk K, Stepień H. Immunohistochemical detection of Follicle Stimulating Hormone Receptor (FSHR) in neuroendocrine tumours. Endokrynol Pol. 2013; 64(4):268-71. https://doi.org/10.5603/EP.2013.0004 DOI: https://doi.org/10.5603/EP.2013.0004

Pawlikowski M, Radek M, Jaranowska M, Kunert-Radek J, Swietoslawski J, Winczyk K. Expression of Follicle Stimulating Hormone Receptors in pituitary adenomas - A marker of tumour aggressiveness? Endokrynol Pol. 2014; 65(6):469-71. https://doi.org/10.5603/ EP.2014.0065 DOI: https://doi.org/10.5603/EP.2014.0065

Pawlikowski M, Jaranowska M, Pisarek H, Kubiak R, Fuss-Chmielewska J, Winczyk K. Ectopic expression of Follicle-Stimulating Hormone Receptors in thyroid tumors. Archives of Medical Science. 2015; 11(6):1314-17. https://doi.org/10.5114/aoms.2015.56357 DOI: https://doi.org/10.5114/aoms.2015.56357

Kero J, Poutanen M, Zhang FP, Rahman N, McNicol AM, Nilson JH, et al. Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex. J Clin Invest. 2000; 105(5):633-41. https://doi.org/10.1172/JCI7716 DOI: https://doi.org/10.1172/JCI7716

Pabon JE, Li X, Lei ZM, Sanfilippo JS, Yussman MA, Rao CV. Novel presence of luteinizing hormone/chorionic gonadotropin receptors in human adrenal glands. J Clin Endocrinol Metab. 1996; 81(6):2397-400. https://doi.org/10.1210/jcem.81.6.8964884 DOI: https://doi.org/10.1210/jcem.81.6.8964884

Li S, Yang C, Fan J, Yao Y, Lv X, Guo Y, et al. Pregnancyinduced Cushing’s syndrome with an adrenocortical adenoma overexpressing LH/hCG receptors: A case report. BMC Endocr Disord. 2020; 20(1). https://doi.org/10.1186/s12902-020-0539-0 DOI: https://doi.org/10.1186/s12902-020-0539-0

Plöckinger U, Chrusciel M, Doroszko M, Saeger W, Blankenstein O, Weizsäcker K, et al. Functional implications of LH/hCG receptors in pregnancy-induced cushing syndrome. J Endocr Soc. 2017; 1(1):57-71.

D’Hauterive SP, Berndt S, Tsampalas M, Charlet-Renard C, Dubois M, Bourgain C, et al. Dialogue between blastocyst hCG and endometrial LH/hCG receptor: Which role in implantation? Gynecol Obstet Invest. 2007; 64(3):156-60. https://doi.org/10.1159/000101740 DOI: https://doi.org/10.1159/000101740

Bukovsky A, Indrapichate K, Fujiwara H, Cekanova M, Ayala ME, Dominguez R, et al. Multiple Luteinizing Hormone Receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer’s disease. Biol Reprod. 2001; 64(1):179-87.

Movsas TZ, Muthusamy A. The potential effect of human chorionic gonadotropin on vasoproliferative disorders of the immature retina. Neuroreport. 2018; 29(18):1525-9. https://doi.org/10.1097/WNR.0000000000001140 DOI: https://doi.org/10.1097/WNR.0000000000001140

Lottini T, Iorio J, Lastraioli E, Carraresi L, Duranti C, Sala C, et al. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci Rep. 2021; 11(1). https://doi.org/10.1038/s41598-021-87492-5 DOI: https://doi.org/10.1038/s41598-021-87492-5

Mondaca JM, Uzair ID, Castro Guijarro AC, Flamini MI, Sanchez AM. Molecular basis of LH action on breast cancer cell migration and invasion via kinase and scaffold proteins. Front Cell Dev Biol. 2021; 8. https://doi.org/10.3389/fcell.2020.630147 DOI: https://doi.org/10.3389/fcell.2020.630147