Anomalous Behavior of Disease-Inflicting Polymorphic Variants of Nuclear Receptor THRβ of Indian Origin

Jump To References Section

Authors

  • Special Center For Molecular Medicine, Jawaharlal Nehru University, New Delhi, India-110067 ,IN
  • Special Center For Molecular Medicine, Jawaharlal Nehru University, New Delhi, India-110067 ,IN
  • Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi, New Delhi – 110067 ,IN

DOI:

https://doi.org/10.18311/jer/2023/40029

Keywords:

Autism Spectrum Disorder, Polymorphism, Resistance to Thyroid Hormone, Thyroid Hormone, Thyroid Hormone Receptor Beta

Abstract

Thyroid hormone receptor β (THRβ) binds to thyroid hormones to execute various cellular and physiological processes as a ligand-inducible transcriptional factor. THRs, especially THRβ, are key players in the central regulation of the HPT axis. They ensure a delicate balance between thyroid hormone production and feedback control, allowing the body to adapt to changing environmental conditions. Polymorphisms in THRβ can lead to multiple clinical manifestations like resistance to thyroid hormone β, neurological or psychological disorders (like autism, intellectual disabilities, etc), and several types of cancers (papillary thyroid cancer, breast cancer, etc). This study examined two disease-inflicting polymorphic variants of THRβ, P323L, and P453S of Indian origin. It was observed that these variants exhibit impaired subcellular localization patterns, transcriptional functions, and compromised receptor stability. The study provides valuable insight into the cellular mechanism underlying receptor dysfunction and inflicting disease states. It is anticipated that disease-inflicting polymorphic variants of THRβ influence the structural and functional behavior of the receptor, contributing to the onset of disease. A concerted effort to gain the molecular basis of receptor dysregulation will help improve the assessment and management of THRβ-mediated diseases.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-08-26

How to Cite

Rehman, G., Chhabra, A., & Tyagi, R. (2024). Anomalous Behavior of Disease-Inflicting Polymorphic Variants of Nuclear Receptor THRβ of Indian Origin. Journal of Endocrinology and Reproduction, 28(1), 69–77. https://doi.org/10.18311/jer/2023/40029

Issue

Section

Research Article

 

References

Prathibha S, Dahiya D, Robin CRR, Nishkala CV, Swedha S. A novel technique for detecting various thyroid diseases using deep learning. Intell Autom Soft Comput. 2023; 35(1):199-214. https://doi.org/10.32604/iasc.2023.025819

Rehman G, Kumari N, Bano F, Tyagi RK. Thyroid hormone receptor beta: Relevance in human health and diseases. Endocrine Metab Sci. 2023; 13:100144. https://doi.org/10.1016/j.endmts.2023.100144

Mackenzie LS. Thyroid hormone receptor antagonists: From environmental pollution to novel small molecules. Vitamins and Hormones Academic Press Inc.; 2018. p. 147-62; https://doi.org/10.1016/bs.vh.2017.04.004 PMid:29407433

Abel ED, Boers M-E, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, et al. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system. J Clin Invest. 1999; 104(3):291-300. https://doi.org/10.1172/JCI6397 PMid:10430610 PMCid:PMC408418

Moran C, Schoenmakers N, Visser WE, Schoenmakers E, Agostini M, Chatterjee K. Genetic disorders of thyroid development, hormone biosynthesis and signalling. Clin Endocrinol (Oxf). 2022; 502-14. https://doi.org/10.1111/cen.14817 PMid:35999191 PMCid:PMC9544560

Kannan S, Jain A, Tripathy R, Mahadevan S. Resistance to thyroid hormone - A novel mutation in THRβ-Gene from India. Indian J Pediatr. 2017; 84(3):238-9. https://doi.org/10.1007/s12098-016-2239-3 PMid:27743306

Kalikiri MK, Mamidala MP, Rao AN, Rajesh V. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in Autism Spectrum Disorder (ASD) patients. Autism Res. 2017; 10(12):1919-28. https://doi.org/10.1002/aur.1838 PMid:28856816

Sun H, Cao L, Zheng R, Xie S, Liu C. Update on resistance to thyroid hormone Syndromeβ. Ital J Pediatr. 2020; 46(1). https://doi.org/10.1186/s13052-020-00929-x PMid:33176840 PMCid:PMC7656732

Vissenberg R, Manders VD, Mastenbroek S, Fliers E, Afink GB, Ris-Stalpers C, et al. Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update. 2015; 21(3):378-87. https://doi.org/10.1093/humupd/dmv004 PMid:25634660

Liu Y, Qu K, Hai Y, Li X, Zhao L, Zhao C. SNP mutations occurring in thyroid hormone receptor influenced individual susceptibility to triiodothyronine: Molecular dynamics and site-directed mutagenesis approaches. J Cell Biochem. 2018; 119(3):2604-16. https://doi.org/10.1002/jcb.26425 PMid:29024007

Bagcchi S. Hypothyroidism in India: More to be done. Lancet Diabetes Endocrinol. 2014; 2(10):778. https://doi.org/10.1016/S2213-8587(14)70208-6 PMid:25282085

Minakhina S, De Oliveira V, Kim SY, Zheng H, Wondisford FE. Thyroid hormone receptor phosphorylation regulates acute fasting-induced suppression of the hypothalamic-pituitary-thyroid axis. PNAS. 2021; 118(39).

Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014; 35(2):159-94. https://doi.org/10.1210/er.2013-1087 PMid:24423980 PMCid:PMC3963261

Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Receptor modulators associated with the hypothalamus-pituitary-thyroid axis. Front Pharmacol. 2023; 14. https://doi.org/10.3389/fphar.2023.1291856 PMid:38111381 PMCid:PMC10725963

Weitzel JM. Impaired repressor function in SUMOylation-defective thyroid hormone receptor isoforms. Eur Thyroid J. 2016; 5(3):152-63. https://doi.org/10.1159/000447232 PMid:27843805 PMCid:PMC5091228

Dash AK, Yende AS, Tyagi RK. Novel application of red fluorescent protein (DsRed-Express) for the study of functional dynamics of nuclear receptors. J Fluoresc. 2017; 27(4):1225-31. https://doi.org/10.1007/s10895-017-2109-z PMid:28470379

Fattori J, Campos JLO, Doratioto TR, Assis LM, Vitorino MT, Polikarpov I, et al. RXR agonist modulates TR: Corepressor dissociation upon 9-cis retinoic acid treatment. Mol Endocrinol. 2015; 29(2):258-73. https://doi.org/10.1210/me.2014-1251 PMid:25541638 PMCid:PMC5414759

Dash AK, Yende AS, Jaiswal B, Tyagi RK. Heterodimerization of retinoid X receptor with xenobiotic receptor partners occurs in the cytoplasmic compartment: Mechanistic insights of events in living cells. Exp Cell Res. 2017; 360(2):337-46. https://doi.org/10.1016/j.yexcr.2017.09.024 PMid:28939253

Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003; 31(13):3812-14. https://doi.org/10.1093/nar/gkg509 PMid:12824425 PMCid:PMC168916

Poon KS. In silico analysis of BRCA1 and BRCA2 missense variants and the relevance in molecular genetic testing. Sci Rep. 2021; 11(1). https://doi.org/10.1038/s41598-021-88586-w PMid:34045478 PMCid:PMC8160182

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013; 76(1):7.20.1-41. https://doi.org/10.1002/0471142905.hg0720s76 PMid:23315928 PMCid:PMC4480630

Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005; 33(Suppl. 2):W306-10. https://doi.org/10.1093/nar/gki375 PMid:15980478 PMCid:PMC1160136

Kumar S, Kashyap J, Thakur K, Tyagi RK. A simple method for visual assessment and quantification of altered subcellular localization of nuclear receptors. Nuclear Receptors: The Art and Science of Modulator Design and Discovery. (Badr MZ. ed) Springer International Publishing: Cham; 2021. p. 23-36. https://doi.org/10.1007/978-3-030-78315-0_2

Dash AK, Tyagi RK. A compendium of nuclear receptors : The superfamily of ligand-modulated transcription factors. J Endocrinol Reprod. 2016; 20(1):149-76.

Kashyap J, Kumari N, Ponnusamy K, Tyagi RK. Hereditary Vitamin D-Resistant Rickets (HVDRR) associated SNP variants of vitamin D receptor exhibit malfunctioning at multiple levels. Biochim Biophys Acta Gene Regul Mech. 2023; 1866(1). https://doi.org/10.1016/j.bbagrm.2022.194891 PMid:36396100

Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. Biochim Biophys Acta Gene Regul Mech. 2016; 1859(9):1183-97. https://doi.org/10.1016/j.bbagrm.2016.03.001 PMid:26962022

Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 2014; 10(10):582-91. https://doi.org/10.1038/nrendo.2014.143 PMid:25135573 PMCid:PMC4578869

Sarkar S, Gupta VK, Sharma S, Shen T, Gupta V, Mirzaei M, et al. Computational refinement identifies functional destructive single nucleotide polymorphisms associated with human retinoid X receptor gene. J Biomol Struct Dyn. 2023; 41(4):1458-78. https://doi.org/10.1080/07391102.2021.2021991 PMid:34971346

Most read articles by the same author(s)