Phytoremediation: An Approach for Petrochemical Contaminated Soil of Assam

Jump To References Section

Authors

  • Department of Botany, Gauhati University, Guwahati - 781014, Assam ,IN
  • Department of Botany, Moridhal College, Dhemaji - 787057, Assam ,IN
  • Department of Botany, Chaiduar College, Gohpur - 784168, Assam ,IN
  • Department of Microbiology, Tripura University, Agartala - 799022, Tripura ,IN

DOI:

https://doi.org/10.18311/jnr/2024/34917

Keywords:

Petrochemical-Contaminated Soil, Plants, Remediation

Abstract

The presence of a component, impurity, or other unfavourable element that taints, corrupts, infects, renders unfit, or degrades a material, or natural environment is referred to as environmental contamination. Due to the potential negative effects caused by the chemical discharges, environmental issues have now become crucial factors to consider. Petrochemical wastes are one of the most serious environmental contaminants which comprise a large group of chemicals derived from petroleum and natural gases. The petrochemical pollutants, belonging to the groups such as greenhouse gases, volatile organic compounds, Particulate Matter (PM) with heavy metals, and polycyclic aromatic compounds, act as potential soil contaminants, causing disturbance and harm to the soil ecosystem. Phytoremediation is an emerging and eco-friendly way to mitigate petrochemical contamination of soil. It is an in situ technique to purify contaminated soil or water using plants (trees, shrubs, grasses and aquatic plants) and their associated microorganisms. This technique is favourable for tropical countries like India where there is immense growth of plants. Though plants like Mirabilis jalapa, Italian ryegrass, sorghum, maize, and alfalfa are used worldwide, in Assam also various plant species are used for remediation purposes in petrochemical-contaminated soil. Crotalaria pallida, Cyperus brevifolius, Cynodondactylon. Mimosa pudica etc. are some of the plant species that have been reported to possess the ability to degrade toxic chemicals into non-toxic or less-toxic products with the aid of microbial colonies in the soil. This review is an effort to through some light on the plants of Assam as well as worldwide along with their family in the remediation of petroleum-contaminated soil. Thus, it will be helpful to select appropriate plants for the purpose of phytoremediation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-01-01

How to Cite

Devi, J., Kalita, S., Kashyap, P., & Borgohain, K. (2024). Phytoremediation: An Approach for Petrochemical Contaminated Soil of Assam. Journal of Natural Remedies, 24(1), 71–78. https://doi.org/10.18311/jnr/2024/34917

Issue

Section

Short Review
Received 2023-09-01
Accepted 2023-10-03
Published 2024-01-01

 

References

Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR. Phytoremediation - An Overview. Crit Rev Plant Sci. 2005; 24:109-22. https://doi.org/10.1080/07352680590952496 DOI: https://doi.org/10.1080/07352680590952496

Janbandhu A, Fulekar MH. Biodegradation of phenanthrene using adapted microbial consortium isolated from a petrochemical contaminated environment. J Hazard Mater. 2011; 187(1-3): 333–40. https://doi.org/10.1016/j.jhazmat.2011.01.034 PMid:21281999 DOI: https://doi.org/10.1016/j.jhazmat.2011.01.034

Singh OV, Jain RK. Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol. 2003; 63:128-35. https://doi.org/10.1007/s00253-003-1425-1 PMid:12925865 DOI: https://doi.org/10.1007/s00253-003-1425-1

Al-Baldawi IA, Abdullah SS, Anuar N, Mushrifah I. Bioaugmentation for the enhancement of hydrocarbon phytoremediation by rhizobacteria consortium in pilot horizontal subsurface flow constructed wetlands. Int J Environ Sci Technol. 2017; 14:75-84. https://doi.org/10.1007/s13762-016-1120-2 DOI: https://doi.org/10.1007/s13762-016-1120-2

Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges, and opportunities. Chemosphere. 2020; 247:125932. https://doi.org/10.1016/j.chemosphere.2020.125932 PMid:32069719 DOI: https://doi.org/10.1016/j.chemosphere.2020.125932

Cunningham SD, Anderson TA, Schwab PA, Hsu FC. Phytoremediation of soils contaminated with organic pollutants. Adv Agron. 1996; 56:55-114. https://doi.org/10.1016/S0065-2113(08)60179-0 DOI: https://doi.org/10.1016/S0065-2113(08)60179-0

Raskin I, Ensley BD. Recent developments for in situ treatment of metal contaminated soils. In: Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons Inc., New York. 2000. Available at: http//clu-n.org/techfocus

Environmental Protection Agency (USEPA). (2000). Introduction to Phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.

UNEP (Undated). Phytoremediation: An environmentally sound technology for pollution prevention, control, and remediation. An introductory guide to decision-makers. newsletter and technical publications freshwater management series No. 2, United Nations Environment Programme Division of Technology, Industry, and Economics. United States.

EPA. A Citizen’s Guide to Phytoremediation. EPA 542-F-98-011. United States Environmental Protection Agency. 2000; p. 6. Available at: http//www.bugsatwork.com/XYCLONYX/EPA_GUIDES /PHYTO.PDF

Zhang H, Zheng LC, Yi XY. Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int. J. Environ. Sci. Tech. 2009; 6:249-58. https://doi.org/10.1007/BF03327629 DOI: https://doi.org/10.1007/BF03327629

Trap S, Kohler A, Larsen LC, Zambrano KC, Karlson U. Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J. Soil Sediments. 2005; 1:71-6. https://doi.org/10.1007/BF02987712 DOI: https://doi.org/10.1007/BF02987712

Zhuang P, Ye ZH, Lan CY, Xie ZW, Hsu WS. Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil. 2005; 276:153-62. https://doi.org/10.1007/s11104-005-3901-0 DOI: https://doi.org/10.1007/s11104-005-3901-0

Cook RL, Hesterberg D. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J phytoremediation. 2013; 15(9):844-60. https://doi.org/10.1080/15226514.2012.760518 PMid:23819280 DOI: https://doi.org/10.1080/15226514.2012.760518

Peng S, Zhou Q, Cai Z, Zhang Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater. 2009; 168:1490-6. https://doi.org/10.1016/j.jhazmat.2009.03.036 PMid:19346069 DOI: https://doi.org/10.1016/j.jhazmat.2009.03.036

Merkl N, Schultze-Kraft R, Infante C. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut. 2005; 165:195–209. https://doi.org/10.1007/s11270-005-4979-y DOI: https://doi.org/10.1007/s11270-005-4979-y

Kaimi E, Mukaidani T, Tamaki M. Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod Sci. 2007; 10(2):211-218. https://doi.org/10.1626/pps.10.211 DOI: https://doi.org/10.1626/pps.10.211

Tang KHD, Angela J. Phytoremediation of crude oil-contaminated soil with local plant species. In IOP Conference Series: Materials Science and Engineering. 495(1):012054. https://doi.org/10.1088/1757-899X/495/1/012054 DOI: https://doi.org/10.1088/1757-899X/495/1/012054

Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G. Potential of vetiver (Vetiveriazizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J phytoremediation. 2006; 8(4):273-84. https://doi.org/10.1080/15226510600992808 PMid:17305302 DOI: https://doi.org/10.1080/15226510600992808

Agnello, A. C. The potential of alfalfa for use in chemically and biologically assisted phytoremediation of soil co-contaminated with petroleum hydrocarbons and metals (Doctoral dissertation, Université Paris Est; Universitàdegli Studi di Cassino e del Lazio Meridionale; UNESCO-IHE). 2014.

Salmi N, Siti R, Mushrifah I. Preliminary test of phytoremediation of hydrocarbon contaminated soil using Paspalum vaginatum Sw. Aust J Basic Appl Sci. 2012; 6(1):39-42.

Penã-Castro JM, Barrera-Figueroa BE, Fernández-Linares L, Ruiz-Medrano R, Xoconostle-Cázares B. Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress. Plant Sci. 2006; 170(4):724-31. https://doi.org/10.1016/j.plantsci.2005.11.004 DOI: https://doi.org/10.1016/j.plantsci.2005.11.004

Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G, and Yousaf S. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ Exp Bot. 2018; 153:80-8. https://doi.org/10.1016/j.envexpbot.2018.05.012 DOI: https://doi.org/10.1016/j.envexpbot.2018.05.012

Yousaf U, Khan AHA, Farooqi A, Muhammad YS, Barros R, Tamayo-Ramos JA, and Yousaf S. Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere, 2022; 286:131782. https://doi.org/10.1016/j.chemosphere.2021.131782 PMid:34375825 DOI: https://doi.org/10.1016/j.chemosphere.2021.131782

Rafique HM, Khan MY, Asghar HN, Ahmad Zahir Z, Nadeem SM, Sohaib M, and Al-Barakah FN. Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase-containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil. Int J Phytoremediation. 2022; p. 1-11. https://doi.org/10.1080/15226514.2022.2104214 PMid:35917513 DOI: https://doi.org/10.1080/15226514.2022.2104214

Basumatary B, Saikia R, Bordoloi S, Das HC, Sarma HP. Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of Upper Assam, India. J Chem Technol Biotechnol. 2012; 87(9):1329-34. https://doi.org/10.1002/jctb.3773 DOI: https://doi.org/10.1002/jctb.3773

Baruah P, Deka S, Baruah PP. Phytoremediation of crude oil-contaminated soil employing Crotalaria pallida Aiton. Environ Sci Pollut Res. 2016. https://doi.org/10.1007/s11356-016-6227-y PMid:26865490 DOI: https://doi.org/10.1007/s11356-016-6227-y

Basumatary B, Bordoloi S, Sarma HP. Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut. 2012; 223:3373–83. https://doi.org/10.1007/s11270-012-1116-6 DOI: https://doi.org/10.1007/s11270-012-1116-6

Basumatary B, Bordoloi S. Phytoremediation of crude oil-contaminated soil using Cynodondactylon (L.) Pers. Phytoremediation. 2016. https://doi.org/10.1007/978-3-319-41811-7_3 DOI: https://doi.org/10.1007/978-3-319-41811-7_3

Deka S, Deka H, Sarma NS. Phytoremediation of hydrocarbon-contaminated soil of oil field situated at Lakowa, Upper Assam, India. Proceedings of ISEPEHH - 2009, Tirupati, India.

Akram S, Deka H. Phytoremediation potential of some abundantly growing indigenous herbs of crude oil contaminated sites. 2020. https://doi.org/10.22438/jeb/42/1/MRN-1476 DOI: https://doi.org/10.22438/jeb/42/1/MRN-1476

Basumatary B, Saikia R, Das HC, Bordoloi S. Field note: Phytoremediation of petroleum sludge contaminated field using sedge, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Int J Phytoremediation. 2013; 15:877–88. https://doi.org/10.1080/15226514.2012.760520 PMid:23819282 DOI: https://doi.org/10.1080/15226514.2012.760520

Bordoloi S, Basumatary B, Saikia R, Das HC. Axonopus compressus (Sw.) P. Beauv. A native grass species for phytoremediation of hydrocarbon contaminated soil in Assam, India. J Chem Technol Biotechnol. 2012; 87(9):1335-41. https://doi.org/10.1002/jctb.3765 DOI: https://doi.org/10.1002/jctb.3765

Bordoloi S, Basumatary B. In Phytoremediation: Management of environmental contaminants. A study on degradation of heavy metals in crude oil-contaminated soil using Cyperus rotundus. 2016; 4:53-60. https://doi.org/10.1007/978-3-319-41811-7_4 DOI: https://doi.org/10.1007/978-3-319-41811-7_4

Sarma N, Goswami M, Rabha S, Patowary R, Devi A. Baseline study of water, soil, and identification of potential native phytoremediators of total petroleum hydrocarbon from oil-contaminated areas in the vicinity of Geleky oilfield of Assam. Environ Monit Assess. 2023; 195(7):1-24. https://doi.org/10.1007/s10661-023-11392-6 PMid:37296255 DOI: https://doi.org/10.1007/s10661-023-11392-6

Bhuyan B, Pandey P. Remediation of petroleum hydrocarbon contaminated soil using hydrocarbonoclastic rhizobacteria, applied through Azadirachta indica rhizosphere. Int J Phytoremediation. 2022; 24(13):1444-54. https://doi.org/10.1080/15226514.2022.2033689 PMid:35113751 DOI: https://doi.org/10.1080/15226514.2022.2033689

Yenn R, Borah M, Boruah HPD, Roy AS, BaruahR, Saikia N, Sahu OP, Tamuli AK. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation. Int. J. phytoremediation. 2014; 16(9):900-25. https://doi.org/10.1080/15226514.2013.810573 PMid:24933892 DOI: https://doi.org/10.1080/15226514.2013.810573

Meištininkas R, Vaškevičienė I, Dikšaitytė A, Pedišius N, Žaltauskaitė J. Potential of eight species of legumes for heavy fuel oil-contaminated soil hytoremediation. Sustainability. 2023; 15(5):4281. https://doi.org/10.3390/su15054281 DOI: https://doi.org/10.3390/su15054281

Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 2022; 8:100203. https://doi.org/10.1016/j.envadv.2022.100203 DOI: https://doi.org/10.1016/j.envadv.2022.100203

Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere. 2022; 303:134954. https://doi.org/10.1016/j.chemosphere.2022.134954 PMid:35595111 DOI: https://doi.org/10.1016/j.chemosphere.2022.134954

Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. COBIOT. 2022; 74:21-31. https://doi.org/10.1016/j.copbio.2021.10.024 PMid:34781102 DOI: https://doi.org/10.1016/j.copbio.2021.10.024

Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 2023; 14:1076876. https://doi.org/10.3389/fpls.2023.1076876 PMid:36778693 PMCid:PMC9911669 DOI: https://doi.org/10.3389/fpls.2023.1076876

Banks MK, Govidaraju RS, Schwab AP Kulakow P. Phytoremediation of hydrocarbon contaminated soil. Lewis Publishers, Boca Raton, Florida, 2000.