Qualitative Phytochemical Screening, Fatty Acid Profile and Biological Studies of the Bark of Mallotus nudiflorus (Pitali) Plant

Jump To References Section

Authors

  • Department of Chemistry, University of Dhaka, Dhaka - 1000 ,BD
  • Department of Chemistry, University of Dhaka, Dhaka - 1000 ,BD
  • Department of Chemistry, University of Dhaka, Dhaka - 1000 ,BD
  • Department of Chemistry, University of Dhaka, Dhaka - 1000 ,BD

DOI:

https://doi.org/10.18311/ti/2024/v31i1/30794

Keywords:

Antimicrobial Activity, Antioxidant, Cell Cytotoxicity, Fatty Acids, Mallotus nudiflorus, Phenolic Content, Phytochemical Screening, Toxicity

Abstract

In the present study, the Mallotus nudiflorus (L.) plant has been taken to determine the in-vitro analysis to find out the therapeutic value. The bioassays of the raw extract of methanol of bark of M. nudiflorus and by Kupchan’s extraction method collecting n-Hexane (HEX), Dichloromethane (DCM), Chloroform (CHCl3), Ethylacetate (EA) and Aqueous (AQ) fractions were scrutinized to find out its therapeutic value. The findings of phytochemical screening of the methanol extract of barks revealed the presence of several secondary metabolites. By using the GC-FID method the result showed that M. nudiflorus contained four bound fatty acids and four free fatty acids. EA fraction had the maximum phenolic content among all the fractions at (133.67±0.99) mg of GAE/g where the Folin- Ciocalteu reagent was used as an oxidizing agent. The antioxidant activity was measured in terms of its ability to scavenge free radicals (DPPH assay). Among all extractives, the greatest ability to scavenge for free radicals was shown by EA extract with an IС50 value (12.08±0.15) μg/ml. In the toxicity of brine shrimp test, the HEX fraction had the maximum toxicity with an LC50 value of (0.12±0.01) μg/ml. Cell cytotoxicity was observed for sample CHCl3 and EA on both the Vero (kidney epithelial cells taken from an African green monkey) and HeLa (a human cervical cancer cell) cell line. All the fractions were subjected to in vitro microbial screening, which revealed that DCM, CHCl3, and EA fractions showed growth inhibition, particularly against various Gram-positive and Gram-negative bacteria by disc diffusion method. The maximum zone of inhibition in the antimicrobial activity was produced by CHCl3 fraction against Staphylococcus aureus (17 mm). The results of in vitro experiments have demonstrated that the extracts from the barks of M. nudiflorus have great potential for medicinal uses and might be studied for further chemical exploration.

Downloads

Download data is not yet available.

Published

2024-02-28

How to Cite

Mimi, S. S., Hasan, M. M., Rahman, M. H., & Chowdhury, T. A. (2024). Qualitative Phytochemical Screening, Fatty Acid Profile and Biological Studies of the Bark of <i>Mallotus nudiflorus</i> (Pitali) Plant. Toxicology International, 31(1), 63–72. https://doi.org/10.18311/ti/2024/v31i1/30794
Received 2022-07-24
Accepted 2023-06-30
Published 2024-02-28

 

References

Bodeker G, Ong C-K. WHO global atlas of traditional, complementary, and alternative medicine: World Health Organization; 2005. DOI: https://doi.org/10.1142/9781860949135

Chinedu E, Arome D, Ameh FS. A new method for determining acute toxicity in animal models. Toxicology international. 2013; 20(3). https://doi.org/10.4103/0971- 6580.121674 PMid:24403732 PMCid: PMC3877490 DOI: https://doi.org/10.4103/0971-6580.121674

Hasan MM, Hossain MS, Taher MA, Rahman T. Evaluation of analgesic, antidiarrheal and hypoglycemic activities of Wendlandia paniculata (Roxb.) DC leaves extract using mice model. Toxicology International. 2021; 28(2):155-63. https://doi.org/10.18311/ti/2021/v28i2/26775 DOI: https://doi.org/10.18311/ti/2021/v28i2/26775

Powell RG, Smith Jr CR, Plattner RD, Jones BE. Additional new maytansinoids from Trewia nudiflora: 10-Epitrewiasine and nortrewiasine. Journal of Natural Products. 1983; 46(5):660- 6. https://doi.org/10.1021/np50029a012 DOI: https://doi.org/10.1021/np50029a012

Kulju K, Sierra S, Van Welzen P. Re-shaping Mallotus [part 2]: Inclusion of Neotrewia, Octospermum and Trewia in Mallotus ss (Euphorbiaceae ss). Blumea-Biodiversity, Evolution and Biogeography of Plants. 2007; 52(1):115-36. https://doi.org/10.3767/000651907X612364 DOI: https://doi.org/10.3767/000651907X612364

Barua KN, Dutta NB, Hazarika P, Hazarika P, Saikia NJ. Variation of fatty oil content in differentpopulations of Mallotus nudiflorus (L.) Kulju and Welzen occurring in diverse agro- climatic zones of Assam. Journal of Medicinal Plants. 2022; 10(3):30-5. https://doi.org/10.22271/ plants.2022.v10.i3a.1417 DOI: https://doi.org/10.22271/plants.2022.v10.i3a.1417

Duyti SY. Investigation of in-vivo antidiarrheal and insecticidal activity of Trewia nudijlora leafextract; 2016.

Gupta S, Ved A. Operculina turpethum (Linn.) Silva Manso as a medicinal plant species: A review on bioactive components and pharmacological properties. Pharmacognosy Reviews. 2017; 11(22):158. https://doi.org/10.4103/phrev.phrev_6_17 PMid:28989252 PMCid: PMC5628523 DOI: https://doi.org/10.4103/phrev.phrev_6_17

Du ZZ, He HP, Wu B, Shen YM, Hao XJ. Chemical constituents from the pericarp of Trewia nudiflora. Helvetica Chimica Acta. 2004; 87(3):758-63. https://doi.org/10.1002/hlca.200490070 DOI: https://doi.org/10.1002/hlca.200490070

Ganguly S. Isolation of ricinidine from plant source. Phytochemistry. 1970; 9(7):1667-8. https://doi.org/10.1016/S0031-9422(00)85293-0 DOI: https://doi.org/10.1016/S0031-9422(00)85293-0

Mukherjee S, Shaw A, Ganguly S, Ganguly T, Saha P. Amarinin: A new growth inhibitor from Luffa amara. Plant and Cell Physiology. 1986; 27(5):935-8. https://doi. org/10.1093/oxfordjournals.pcp.a077182 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a077182

Chisholm MJ, Hopkins CY. Kamlolenic acid and other conjugated fatty acids in certain seed oils. Journal of the American Oil Chemists’ Society. 1966; 43(6):390-2. https://doi.org/10.1007/BF02646796 DOI: https://doi.org/10.1007/BF02646796

Kang QJ, Yang XW, Wu SH, Ma YL, Li L, Shen YM. Chemical constituents from the stem bark of Trewia nudiflora L. and their antioxidant activities. Planta Medica. 2008; 74(04):445- 8. https://doi.org/10.1055/s-2008-1034361 PMid:18484540 DOI: https://doi.org/10.1055/s-2008-1034361

Guo-Hong L, Pei-Ji Z, Yue-Mao S, Ke-Qin Z. Antibacterial activities of neolignans isolated from the seed endotheliums of Trewia nudiflora. Journal of Integrative Plant Biology. 2004; 46(9):1122.

Van Wagenen B, Larsen R, Cardellina J. II, Randazzo D, Lidert ZC, Swithenbank C. Ulosantoin, a potent insecticide from the sponge Ulosa ruetzleri. J Org Chem. 1993; 58:335- 7. https://doi.org/10.1021/jo00054a013 DOI: https://doi.org/10.1021/jo00054a013

Edeoga HO, Okwu D, Mbaebie B. Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology. 2005; 4(7):685-8. https://doi. org/10.5897/AJB2005.000-3127 DOI: https://doi.org/10.5897/AJB2005.000-3127

Perez C. Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp. 1990; 15:113- 5.

Barry A. Principle and practice of Microbiology. Lea and Fabager, Philadelphia. 1976; 3:21- 5.

Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food chemistry. 2005; 89(2):191-8. https://doi.org/10.1016/j. foodchem.2004.02.025 DOI: https://doi.org/10.1016/j.foodchem.2004.02.025

Miah MM, Das P, Ibrahim Y, Shajib MS, Rashid MA. In vitro antioxidant, antimicrobial, membrane stabilization and thrombolytic activities of Dioscorea hispida Dennst. European Journal of Integrative Medicine. 2018; 19:121-7. https://doi.org/10.1016/j.eujim.2018.02.002 DOI: https://doi.org/10.1016/j.eujim.2018.02.002

Chowdhury V, Shristy NT, Rahman MH, Chowdhury TA. Qualitative screening, fatty acid composition analysis and biological studies of Trianthema portulacastrum L. leaves. Dhaka University Journal of Pharmaceutical Sciences. 2022; 21(1):33-43. https://doi.org/10.3329/dujps.v21i1.60394 DOI: https://doi.org/10.3329/dujps.v21i1.60394

Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 1995; 28(1):25-30. https://doi. org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Meyer B, Ferringni N, Puam J, Lacobsen L, Nichols D. The use of biological assays to evaluate botanicals. Drug Info J. 1982; 31:516-54.

Hasan MM, Taher MA, Rahman MA, Muslim T. Analgesic, Anti-diarrheal, CNS-depressant, Membrane Stabilizing and Cytotoxic Activities of Canavalia virosa (Roxb.) W&A. Bangladesh Pharmaceutical Journal. 2019 Jul 21;22(2):214-8. DOI: https://doi.org/10.3329/bpj.v22i2.42307

Al Mamun MR, Ahmed T, Reza MSA, Rahman MH. Phytochemical investigation, fatty acid analysis and in vitro membrane stabilizing activity of the roots of Amaranthus spinosus L. Dhaka University Journal of Science. 2021; 69(1):59-62. https://doi.org/10.3329/dujs.v69i1.54625 DOI: https://doi.org/10.3329/dujs.v69i1.54625

Eyong EU, Agiang M, Atangwho I, Iwara I, Odey M, Ebong P. Phytochemicals and micronutrients composition of root and stem bark extracts of Vernonia amygdalina Del. Journal ofMedicine and Medical Science. 2011; 2(6):900-3.

Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: New findingsin anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry. 2008; 56(15):6185-205. https://doi.org/10.1021/jf8006568 PMid:18593176 DOI: https://doi.org/10.1021/jf8006568

Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. Medicinal Plants: Springer. 2019; 333-59. https://doi.org/10.1007/978-3-030-31269- 5_15 PMCid: PMC7120914 DOI: https://doi.org/10.1007/978-3-030-31269-5_15

Nagy K, Tiuca I-D. Importance of fatty acids in the physiopathology of the human body. Fatty acids: IntechOpen; 2017. https://doi.org/10.5772/67407 DOI: https://doi.org/10.5772/67407

Patti A, Lecocq H, Serghei A, Acierno D, Cassagnau P. The universal usefulness of stearic acidas a surface modifier: Applications to polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry. 2021; 96:1-33. https://doi.org/10.1016/j.jiec.2021.01.024 DOI: https://doi.org/10.1016/j.jiec.2021.01.024

Hu W, Fitzgerald M, Topp B, Alam M, O’Hare TJ. A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts. Journal of Functional Foods. 2019; 62:103520. https:// doi.org/10.1016/j.jff.2019.103520 DOI: https://doi.org/10.1016/j.jff.2019.103520

Willett WC. Dietary fats and coronary heart disease. Journal of Internal Medicine. 2012; 272(1):13-24. https://doi.org/10.1111/j.1365-2796.2012.02553.x PMid:22583051 DOI: https://doi.org/10.1111/j.1365-2796.2012.02553.x

Ghafar F, Nazrin T, Salleh M, Hadi NN, Ahmad N, Hamzah AA, et al. Total phenolic content and total flavonoid content in Moringa oleifera seed. Galeri Warisan Sains. 2017; 1(1):23-5. https://doi.org/10.26480/ gws.01.2017.23.25 DOI: https://doi.org/10.26480/gws.01.2017.23.25

Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chemistry. 2009; 113(4):1202-5. https://doi.org/10.1016/j. foodchem.2008.08.008 DOI: https://doi.org/10.1016/j.foodchem.2008.08.008

Singh N, Rajini P. Free radical scavenging activity of an aqueous extract of potato peel. Food chemistry. 2004; 85(4):611-6. https://doi.org/10.1016/j.foodchem.2003.07.003 DOI: https://doi.org/10.1016/j.foodchem.2003.07.003

Sánchez-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology International. 2002; 8(3):121- 37. https://doi.org/10.1106/108201302026770 DOI: https://doi.org/10.1106/108201302026770

Jainu M, Devi CS. In vitro and in vivo evaluation of the free-radical scavenging potential of Cissus quadrangularis. Pharmaceutical Biology. 2005; 43(9):773-9. https://doi. org/10.1080/13880200500406636 DOI: https://doi.org/10.1080/13880200500406636

Bhor V, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. The International Journal of Biochemistry and Cell Biology. 2004; 36(1):89- 97. https://doi.org/10.1016/S1357- 2725(03)00142-0 PMid:14592535 DOI: https://doi.org/10.1016/S1357-2725(03)00142-0

Singh R, Murthy KC, Jayaprakasha G. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry. 2002; 50(1):81-6. https:// doi.org/10.1021/jf010865b PMid:11754547 DOI: https://doi.org/10.1021/jf010865b

Sarah QS, Anny FC, Misbahuddin M. Brine shrimp lethality assay. Bangladesh J Pharmacol. 2017; 12(2):186-9. https:// doi.org/10.3329/bjp.v12i2.32796 DOI: https://doi.org/10.3329/bjp.v12i2.32796