Determination of Acute Toxicity and the Effect of Sub-Lethal Concentration of Quinalphos on Protein and Lipid Peroxidation in Oreochromis niloticus

Jump To References Section

Authors

  • Department of Zoology, St. Berchmans’ College (Autonomus), Changanassery, Kottayam - 686101, Kerala ,IN
  • Department of Zoology, St. Berchmans’ College (Autonomus), Changanassery, Kottayam - 686101, Kerala ,IN
  • Department of Zoology, St. Berchmans’ College (Autonomus), Changanassery, Kottayam - 686101, Kerala ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/33533

Keywords:

Catalase, Lipid Peroxidation, Organophosphate Pesticide, Protein, Superoxide Dismutase

Abstract

Quinalphos is an organophosphate used in agriculture that is considered to have potential hazardous effects on nontarget organisms. The present study was designed to determine the median lethal concentration (LC50) of quinalphos (an organophosphate pesticide) on the fish, Oreochromis niloticus, for 96 hours. The LC50 value of quinalphos on Oreochromis niloticus for 96 hours was determined as 3.65 μl/L. The study also focuses on the immediate effect of exposure to sub-lethal concentrations of quinalphos on protein and lipid peroxidation rate after 24 hours in brain and muscle tissues. Protein was found to be decreasing while lipid peroxidation rate increased in both tissues after 24 hours of exposure. By the estimation of antioxidant enzymes Superoxide Dismutase (SOD) and Catalase (CAT) activity, it was also identified that quinalphos is capable of impairing the antioxidant defense mechanism of the non-target organism and thereby increase the oxidative stress.

Downloads

Download data is not yet available.

Published

2023-11-03

How to Cite

Shaji, C., Abraham, S. M., & Mathew, J. P. (2023). Determination of Acute Toxicity and the Effect of Sub-Lethal Concentration of Quinalphos on Protein and Lipid Peroxidation in <i>Oreochromis niloticus</i>. Toxicology International, 30(4), 419–427. https://doi.org/10.18311/ti/2023/v30i4/33533
Received 2023-04-17
Accepted 2023-07-30
Published 2023-11-03

 

References

Anwar WA. Biomarkers of human exposure to pesticides. Environ Health Perspect. 1997; 105 (Suppl 4):801-6. PMID: 9255564; PMCID: PMC1470029. https://doi.org/10.1289/ ehp.97105s4801 DOI: https://doi.org/10.1289/ehp.97105s4801

Ahmad L, Khan A, Khan MZ, Hussain I. Cypermethrin induced anemia in male rats. Pakistan Vet J. 2009; 29(4):191-5.

Raj J, Chandra M, Dogra TD, Pahuja M, Raina A. Determination of median lethal dose of combination of endosulfan and cypermethrin in wistar rat. Toxicol Int. 2013; 20(1):1-5. PMID: 23833430; PMCID: PMC3702116. https://doi.org/10.4103/0971-6580.111531 DOI: https://doi.org/10.4103/0971-6580.111531

Slotkin TA, Seidler FJ. Comparative developmental neurotoxicity of organophosphates in vivo: Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull. 2007; 72(4-6):232-74. PMID: 17452286; PMCID: PMC1945108. https://doi.org/10.1016/j. brainresbull.2007.01.005 DOI: https://doi.org/10.1016/j.brainresbull.2007.01.005

Pratap HB, Fu H, Lock RAC, Bonga SEW. Effect of waterborne and dietry cadmium on plasma ions of the teleost Oreochromis mossambicus in relation to water calcium levels. Arch Environ Contam Toxicol. 1989; 18:568-75. https://doi.org/10.1007/BF01055024 DOI: https://doi.org/10.1007/BF01055024

Adeyemi SO, Bankole NO, Adikwu IA, Akombu PM. Food and feeding habits of some commercially important fish species in Gbedikere Lake, Bassa, Kogi State, Nigeria. International Journal of Lakes and Rivers. 2009; 2(1):31–6.

Canonico GC, Arthington A, Mccrary JK, Thieme ML. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems. 2005; 15(5):463–83. https://doi.org/10.1002/aqc.699 DOI: https://doi.org/10.1002/aqc.699

Mjoun K, Rosentrater K, Brown ML. Tilapia: Profile and economic importance. Open PRAIRIE: SDSU Extension; 2010. p. 1-4.

Akhila JS, Shyamjith M, Deepa S, Alwar MC. Acute toxicity studies and determination of median lethal dose. Current Science. 2007; 93(7):917–20.

Rao JV, Begum G, Pallela R, Usman PK, Rao RN. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sublethal exposure to chlorpyrifos. Int J Environ Res Public Health. 2005; 2(3-4):478-83. PMID: 16819104. https://doi. org/10.3390/ijerph2005030013 DOI: https://doi.org/10.3390/ijerph2005030013

Munshigeri, Samdanad B. Effect of fenvalerate on metabolism of Indian major carp Cirrhinus mrigala [PhD thesis]; Dharwad, Karnataka, India: Karnataka University; 2003.

Modesto KA, Martinez CB. Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere. 2010; 78(3):294-9. PMID: 19910015. https://doi.org/10.1016/j. chemosphere.2009.10.047 DOI: https://doi.org/10.1016/j.chemosphere.2009.10.047

Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK. Toxicity of the herbicide atrazine: Effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int J Environ Res Public Health. 2010; 7(8):3298-12. PMID: 20948961; PMCID: PMC2954582. https://doi.org/10.3390/ijerph7083298 DOI: https://doi.org/10.3390/ijerph7083298

Yang C, Lim W, Song G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol. 2020; 234:108758. PMID: 32289527. https://doi.org/10.1016/j.cbpc.2020.108758 DOI: https://doi.org/10.1016/j.cbpc.2020.108758

Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: A review. Med Sci Monit. 2004; 10(6):RA141-7. PMID: 15173684.

Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. 2011; 101(1):13-30. PMID: 21074869. https://doi.org/10.1016/j.aquatox.2010.10.006 DOI: https://doi.org/10.1016/j.aquatox.2010.10.006

Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem. 2017; 86:715-48. PMID: 28441057. https://doi. org/10.1146/annurev-biochem-061516-045037 DOI: https://doi.org/10.1146/annurev-biochem-061516-045037

Davies KJ. Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem. 1987; 262(20):9895-901. PMID: 30368. https://doi.org/10.1016/S0021-9258(18)48018-0 DOI: https://doi.org/10.1016/S0021-9258(18)48018-0

Khatib I, Rychter P, Falfushynska H. Pesticide Pollution: Detrimental outcomes and possible mechanisms of fish exposure to common organophosphates and triazines. J Xenobiot. 2022; 12(3):236-65. PMID: 36135714; PMCID: PMC9500960. https://doi.org/10.3390/jox12030018 DOI: https://doi.org/10.3390/jox12030018

Blahová J, Plhalová L, Hostovský M, Divišová L, Dobšíková R, Mikulíková I, Stěpánová S, Svobodová Z. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol. 2013; 61:82-5. PMID: 23499751. https://doi.org/10.1016/j.fct.2013.02.041 DOI: https://doi.org/10.1016/j.fct.2013.02.041

Ighodaro OM, Akinloye OA. First line defence antioxidants- Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018; 54:287-93. https://doi.org/10.1016/j.ajme.2017.09.001 DOI: https://doi.org/10.1016/j.ajme.2017.09.001

Finney DJ. Probit analysis. Cambridge University Press; 1971. p. 330.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75. PMID: 14907713. https://doi. org/10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-8. PMID: 36810. https://doi. org/10.1016/0003-2697(79)90738-3 DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Misra HP, Fridovich I. Superoxide dismutase: “Positive” spectrophotometric assays. Anal Biochem. 1977; 79(1-2):553-60. PMID: 17332. https://doi. org/10.1016/0003-2697(77)90429-8 DOI: https://doi.org/10.1016/0003-2697(77)90429-8

Takahara S, Hamilton HB, Neel JV, Kobara TY, Ogura Y, Nishimura ET. Hypocatalasemia: A new genetic carrier state. J Clin Invest. 1960; 39(4):610-9. PMID: 13836629; PMCID: PMC293346. https://doi.org/10.1172/JCI104075 DOI: https://doi.org/10.1172/JCI104075

Zinkl JG, Shea PJ, Nakamoto RJ, Callman J. Brain cholinesterase activity of rainbow trout poisoned by carbaryl. Bull Environ Contam Toxicol. 1987; 38(1):29-35. PMID: 3101772. https://doi.org/10.1007/BF01606553 DOI: https://doi.org/10.1007/BF01606553

Hemalatha D, Amala A, Rangasamy B, Nataraj B, Ramesh M. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. Environ Toxicol. 2016; 31(11):1399-406. PMID: 25899319. https://doi.org/10.1002/tox.22145 DOI: https://doi.org/10.1002/tox.22145

Pakhare NB, Reddy KR. Effects of quinalphos (25%EC) on protein content in different tissues of the freshwater fish, Channa gachua (Hamilton, 1822). International Journal for Research in Applied Science and Engineering Technology. 2017; 5(12):987-91.

Asifa KP, Vidya PV, Chitra KC. Assessment of median lethal concentration (LC50 - 96h) and behavioural modification of nonylphenol in the Cichlid fish, Etroplus maculatus (Bloch, 1795). IJALS. 2016; 9(2):190–5.

Sharbide AA, Metkari V, Patode P. Effect of diazinon on acetylcholinesterase activity and lipid peroxidation of Poecilia reticulate. Research Journal of Environmental Toxicology. 2011; 5(2):152-61. https://doi.org/10.3923/ rjet.2011.152.161 DOI: https://doi.org/10.3923/rjet.2011.152.161

Bretaud S, Toutant JP, Saglio P. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Saf. 2000; 47(2):117-24. PMID: 11023689. https://doi.org/10.1006/ eesa.2000.1954 DOI: https://doi.org/10.1006/eesa.2000.1954

Banaee M. Physiological dysfunction in fish after insecticides exposure. Insecticides - Development of Safer and More Effective Technologies. 2013. https://doi. org/10.5772/54742. DOI: https://doi.org/10.5772/54742

Velisek J, Stara A, Svobodov Z. The effects of Pyrethroid and Triazine pesticides on fish physiology. Pesticides in the Modern World – Pests Control Pesticides Exposure and Toxicity Assessment. 2011; 377-402. https://doi.org/10.5772/17289. DOI: https://doi.org/10.5772/17289

Sastry KV, Siddiqui AA. Some hematological, biochemical and enzymological parameters of a freshwater teleost fish, Channa punctatus, exposed to sub-lethal concentrations of quinalphos. Pesticide Biochemistry and Physiology. 1984; 22:8-13. https://doi.org/10.1016/0048-3575(84)90003-8. DOI: https://doi.org/10.1016/0048-3575(84)90003-8

Bradbury SP, Mckim JM, Coats JR. Physiological response of rainbow trout (Salmo gairdneri) to acute fenvalerate intoxication. Pestic Biochem Physiol. 1987; 2:7275-288. DOI: https://doi.org/10.1016/0048-3575(87)90057-5

Naqvi GZ, Shoaib N, Ali AM. Pesticides impact on protein in fish (Oreochromis mossambicus) tissues. Indian Journal of Geo Marine Sciences. 2015; 46(9):1864-8.

Marsillach J, Costa LG, Furlong CE. Protein adducts as biomarkers of exposure to organophosphorus compounds. Toxicology. 2013; 307:46-54. PMID: 23261756; PMCID: PMC3747771. https://doi.org/10.1016/j.tox.2012.12.007 DOI: https://doi.org/10.1016/j.tox.2012.12.007

Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci. 2019; 6:91. PMID: 31750312; PMCID: PMC6843074. https://doi.org/10.3389/fmolb.2019.00091 DOI: https://doi.org/10.3389/fmolb.2019.00091

Parvez S, Raisuddin S. Protein carbonyls: Novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ Toxicol Pharmacol. 2005; 20(1):112-7. PMID: 21783577. https:// doi.org/10.1016/j.etap.2004.11.002 DOI: https://doi.org/10.1016/j.etap.2004.11.002

Berkoz M, Ozkan-Yilmaz F, Ozluer-Hunt A, Gunduz SG, YIld˙Ir˙Im˙ M, YalIn˙ S. Influence of sublethal chlorpyrifos exposure on oxidative stress and acetylcholinesterase activity in common carp (Cyprinus carpio). Fresenius Environ Bull. 2019; 28:4642-9.

Abhijith BD, Ramesh M, Poopal RK. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. J Basic Appl Zool. 2016; 77:31-40. https://doi.org/10.1016/j. jobaz.2015.11.002 DOI: https://doi.org/10.1016/j.jobaz.2015.11.002

Sandoval-Herrera N, Mena F, Espinoza M, Romero A. Neurotoxicity of organophosphate pesticides could reduce the ability of fish to escape predation under low doses of exposure. Sci Rep. 2019; 9(1):10530. PMID: 31324839; PMCID: PMC6642105. https://doi.org/10.1038/s41598- 019-46804-6 DOI: https://doi.org/10.1038/s41598-019-46804-6

Želježić D, Žunec S, Bjeliš M, Benković V, Mladinić M, Lovaković Tariba B, Pavičić I, Marjanović Čermak AM, Kašuba V, Milić M, Pizent A, Lucić Vrdoljak A, Kopjar N. Effects of the chloro-s-triazine herbicide terbuthylazine on DNA integrity in human and mouse cells. Environ Sci Pollut Res Int. 2018; 25(19):19065-81. PMID: 29721798. https://doi.org/10.1007/s11356-018-2046-7 DOI: https://doi.org/10.1007/s11356-018-2046-7

Hassani S, Maqbool F, Salek-Maghsoudi A, Rahmani S, Shabdoorestan MC, Nili Ahmadabadi A, Amini M, Norouzi P, Abdollahi M. Alternation of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon induced acute toxicity in Wister rat: A time course mechanistic study. EXCLI Journal. 2018; 17:57-71. https://doi.org/10.17179/excli2017-760 PMCID: PMC5780620 PMID: 29383019

Hamed HS. Impact of a short-term malathion exposure of Nile Tilapia (Oreochromis niloticus): The protective role of selenium. International Journal of Environmental Monitoring and Analysis. 2015; 3(5-1):30-7.

Bakir B, Erdag D, Yildiz SE, Sari ER, Asker H, Sozmen M. Immunohistochemical examination on the effects of malathion and Onosma nigricaule (Boraginaceae) on Catalase (CAT) and superoxide dismutase-2 (Mn-SOD) in renal tissues of mice. Ankara Univ Vet Fak Derg. 2017; 64:125-30. https://doi.org/10.1501/Vetfak_0000002786 DOI: https://doi.org/10.1501/Vetfak_0000002786

Ajith BS, Jayaprakash CA. Effect of an organophosphate insecticide, dimethoate, on antioxidant enzymes of the fish Nile Tilapia, (Oreochromis niloticus) (L.). International Journal of Science and Research. 2017; 6(11):2128-2.

Kaur M, Jindal R. Oxidative stress response in liver, kidney and gills of Ctenopharyngodon idellus (cuvier and valenciennes) exposed to chlorpyrifos. MOJ Biol Med. 2017; 1(4):103–12. https://doi.org/10.15406/mojbm.2017.01.00021. DOI: https://doi.org/10.15406/mojbm.2017.01.00021