Green Synthesis of Stable and Reusable Zinc Nanoparticle Adsorbents for the Removal of Carcinogenic Heavy Metals in Aqueous Solution

Jump To References Section

Authors

  • Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur - 522502, Andhra Pradesh ,IN
  • Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur - 522502, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/34908

Keywords:

Adsorption Studies, Characterisation, Carcinogenic Heavy Metals, Diospyros chloroxylon, Green Synthesis, Zinc Nanoparticles

Abstract

industrial applications led to an alarming rise in their presence, heightening the potential for contamination in various environmental mediums. In order to mitigate the adverse impacts of these heavy metals, it is imperative to reduce their concentrations in environmental samples. Therefore, this study aimed to produce zinc nanoparticles employing Diospyros chloroxylon (Roxb.) to effectively eliminate carcinogenic metals from water. The produced nanoparticles were subjected to comprehensive characterization using FT-IR, XRD, SEM, and EDX techniques. The XRD data indicated the emergence of a hexagonal wurtzite structure. SEM images illustrated the spherical morphology of the synthesized particles, with an average diameter measuring 53 nm and having elemental zinc accounting for 69.4% of the composition. The subsequent heavy metal sorption experiments encompassed a range of variables, remarkably, the nanoparticles displayed exceptional adsorption capabilities, achieving maximum removal rates of 95.81%, 90.13%, and 91.25% within an equilibrium time of 90 minutes for Cr, Pb, and Cd, respectively. The adsorption process adhered to a pseudo-first-order reaction kinetics model, with high correlation coefficients of 0.9561, 0.99058, and 0.98481, along with respective rate constants (K) of 0.483, 0.233, and 0.328 for Cr, Pb, and Cd. The outcomes highlight that the synthesized zinc nanoparticles exhibit biocompatibility, stability, and reusability, making them a promising tool for effectively removing carcinogenic heavy metals from polluted water sources.

Downloads

Download data is not yet available.

Published

2023-12-11

How to Cite

Rao, C. N., & Sujatha, M. (2023). Green Synthesis of Stable and Reusable Zinc Nanoparticle Adsorbents for the Removal of Carcinogenic Heavy Metals in Aqueous Solution. Toxicology International, 30(4), 639–650. https://doi.org/10.18311/ti/2023/v30i4/34908
Received 2023-08-30
Accepted 2023-11-07
Published 2023-12-11

 

References

Becker J, Manske C, Randl S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr Opin Green Sustain Chem. 2022; 33:100562. https://doi.org/10.1016/j.cogsc.2021.100562 DOI: https://doi.org/10.1016/j.cogsc.2021.100562

Mahmoud AE. Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Mater Chem Phys. 2020; 253: 123336. https://doi.org/10.1016/j.matchemphys.2020.123336 DOI: https://doi.org/10.1016/j.matchemphys.2020.123336

Ebadi M, Zolfaghari MR, Aghaei SS, Zargar M, Shafiei M, Zahiri HS, Noghabi KA. A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of Cyanobacterium nostoc sp. EA03: From Biological Function to Toxicity Evaluation, RSC Advances. 2019; 9(41):23508-25. https://doi.org/10.1039/C9RA03962G DOI: https://doi.org/10.1039/C9RA03962G

Mahmoud AE, Fawzy M. Nanosensors and nano biosensors for monitoring the environmental pollutants. Waste Recycling Technologies for Nanomaterials Manufacturing. 2021; 229-46. https://doi.org/10.1007/978-3-030-68031-2_9 DOI: https://doi.org/10.1007/978-3-030-68031-2_9

Nilavukkarasi M, Vijayakumar S, Prathipkumar S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater Sci Energy Technol. 2020; 3:335-43. https://doi. org/10.1016/j.mset.2019.12.004 DOI: https://doi.org/10.1016/j.mset.2019.12.004

Mahmoud AE, El-Maghrabi N, Hosny M, Fawzy M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ’s thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environ Sci Pollut Res. 2022; 29(59):89772-87. https://doi.org/10.1007/s11356-022-21871-x DOI: https://doi.org/10.1007/s11356-022-21871-x

Berehu HM, Khan MI, Chakraborty R, Lavudi K, Penchalaneni J, Mohapatra B, Mishra A, Patnaik S. Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from Swertia chirayita leaf extract on colorectal cancer cells. Front Bioeng Biotechnol. 2021; 9:788527. https://doi.org/10.3389/fbioe.2021.788527 DOI: https://doi.org/10.3389/fbioe.2021.788527

Espitia PJ, Otoni CG, Soares NF. Zinc oxide nanoparticles for food packaging applications. In Antimicrobial Food Packaging. 2016; 1:425-31. https://doi.org/10.1016/B978-0- 12-800723-5.00034-6 DOI: https://doi.org/10.1016/B978-0-12-800723-5.00034-6

Naiel B, Fawzy M, Halmy MWA, Alaa El Din Mahmoud. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep. 2022; 12:20370. https://doi.org/10.1038/s41598-022-24805-2 DOI: https://doi.org/10.1038/s41598-022-24805-2

Murthy HN, Dalawai D, Arer I, Karadakatti P, Hafiz K. Nutritional value of underutilized fruit: Diospyros chloroxylon Roxb., (green ebony persimmon). Int J Fruit Sci. 2022; 22(1):249-63. https://doi.org/10.1080/15538362.2021.2023065 DOI: https://doi.org/10.1080/15538362.2021.2023065

Shivakumar SP, Vidyasagar GM. Green synthesis and antibacterial activity of silver nanoparticles from ripened fruit pulp of Diospyros chloroxylon Roxb. Elixir Biosciences. 2017; 102:44142-145.

Ghosh MK, Sahu S, Gupta I, Ghorai TK. Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves characterization, optical properties, CT-DNA binding and photocatalytic activity. RSC Adv. 2020; 10(37):22027-35. https://doi.org/10.1039/ D0RA03186K DOI: https://doi.org/10.1039/D0RA03186K

Lace A, Ryan D, Bowkett M, Cleary J. Chromium monitoring in water by colorimetry using optimized 1,5-diphenylcarbazide method. Int J Environ Res Public Health. 2019; 16(10):1803. https://doi.org/10.3390/ ijerph16101803 DOI: https://doi.org/10.3390/ijerph16101803

Wongthanyakram J, Masawat P. Rapid low-cost determination of lead (II) in cassava by an iPod-based digital imaging colorimeter. Analytical Letters. 2019; 52(3):550-61. https://doi.org/10.1080/00032719.2018.1476526 DOI: https://doi.org/10.1080/00032719.2018.1476526

Podgaiskyte V, Vaitiekūnas P. Determination of cadmium in a municipal sewage sludge-based compost by spectrophotometric method. J Environ Eng Landsc Manag. 2009; 17(4):219-25. https://doi.org/10.3846/1648- 6897.2009.17.219-225 DOI: https://doi.org/10.3846/1648-6897.2009.17.219-225

Pai S, Sridevi H, Varadavenkatesan T, Vinayagam R, Selvaraj R. Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik. 2019; 185:248-55. https://doi. org/10.1016/j.ijleo.2019.03.101 DOI: https://doi.org/10.1016/j.ijleo.2019.03.101

Lakshmi Tulas S, Swamy AVVS, Pavani P, Subhashin V. Green synthesis of nanostructured zinc particles using aqueous leaf extract of Schrebera swietenioides Roxb., and their catalytic application in degradation of methyl orange, crystal violet dyes and chromium metal. Int J App Pharm. 2022; 14(2):308- 14. https://doi.org/10.22159/ijap.2022v14i2.43697 DOI: https://doi.org/10.22159/ijap.2022v14i2.43697

Han X, Zhang Y, Zheng C, Yu X, Li S, Wei W. Enhanced Cr(VI) removal from water using a green synthesized nanocrystalline chlorapatite: Physicochemical interpretations and fixed-bed column mathematical model study. Chemosphere. 2021; 264(1):128421. https://doi. org/10.1016/j.chemosphere.2020.128421 DOI: https://doi.org/10.1016/j.chemosphere.2020.128421

Khan TA, Nazir M, Ali I, Kumar A. Arab. Removal of Chromium(VI) from aqueous solution using guar gumnano zinc oxide biocomposite adsorbent. J Chem. 2017; 10:S2388-98. https://doi.org/10.1016/j.arabjc.2013.08.019 DOI: https://doi.org/10.1016/j.arabjc.2013.08.019

Jin X, Liu Y, Tan J, Owens G, Chen Z. Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. J Clean Prod. 2018; 176:929-36. https://doi.org/10.1016/j.jclepro.2017.12.026 DOI: https://doi.org/10.1016/j.jclepro.2017.12.026

Gonfa GH, Seid SM. Adsorption of Cr(V) from aqueous solution using eggshell-based cobalt oxide- zinc oxide nanocomposite. SSRN Electronic Journal. 2022; 8:100574. https://doi.org/10.1016/j.envc.2022.100574 DOI: https://doi.org/10.1016/j.envc.2022.100574

Bandar Al-Mur A, Green Zinc Oxide (ZnO) Nanoparticle synthesis using mangrove leaf extract from Avicenna marina: Properties and application for the removal of toxic metal ions (Cd2+ and Pb2+). Water. 2023; 15(3):455. https:// doi.org/10.3390/w15030455 DOI: https://doi.org/10.3390/w15030455

Kaur A, Singh H, Kang TS, Singh S. Sustainable preparation of Fe(OH)3 and α-Fe2O3 nanoparticles employing Acacia catechu extract for efficient removal of chromium (VI) from aqueous solution. Environ Nanotechnol Monit Manag. 2021; 16:100593. https://doi.org/10.1016/j. enmm.2021.100593 DOI: https://doi.org/10.1016/j.enmm.2021.100593

Sharma P, Prakash J, Palai T, Kaushal R. Surface functionalization of bamboo leave mediated synthesized SiO2 nanoparticles: Study of adsorption mechanism, isotherms and enhanced adsorption capacity for removal of Cr (VI) from aqueous solution. Environ Res. 2022; 214:113761. https://doi.org/10.1016/j.envres.2022.113761 DOI: https://doi.org/10.1016/j.envres.2022.113761

Wenjie O, Ahmed W, Xiuxian F, Lu W, Jiannan L, Jie Y, Asghar RMA, Mahmood M, Juha Alatalo M, Imtiaz M, Li W, Mehmood S. The adsorption potential of Cr from water by ZnO nanoparticles synthesized by Azolla pinnata. Bioinorg Chem Appl. 2022. https://doi.org/10.1155/2022/6209013 DOI: https://doi.org/10.1155/2022/6209013

Saad AA, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-latif MB. Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag. 2018; 9:67-75. https://doi. org/10.1016/j.enmm.2017.12.004 DOI: https://doi.org/10.1016/j.enmm.2017.12.004

Joshi NC. Synthesis of r-GO/PANI/ZnO based material and its application in the treatment of wastewater containing Cd2+ and Cr6+ ions. Sep Sci Technol. 2022; 57(15):2420-31. https://doi.org/10.1080/01496395.2022.2069042 DOI: https://doi.org/10.1080/01496395.2022.2069042

Xu M, Zhang Y, Zhang Z, Shen Y, Zhao M, Pan G, Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem Eng J. 2011; 168(2):737-45. https://doi.org/10.1016/j.cej.2011.01.069 DOI: https://doi.org/10.1016/j.cej.2011.01.069

Mahmoud AED, Al-Qahtani KM, Alflaij SO, Al-Qahtani SF, Alsamhan FA. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci Rep. 2021; 11:12547. https://doi.org/10.1038/ s41598-021-91093-7 DOI: https://doi.org/10.1038/s41598-021-91093-7

Zhang W, Meng L, Mu G, Zhao M, Zou P, Zhang Y A. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions. Appl Surf Sci. 2016; 378:196-206. https://doi.org/10.1016/j. apsusc.2016.03.215 DOI: https://doi.org/10.1016/j.apsusc.2016.03.215

Joshi NC, Rawat BS, Kumar P, Kumar N, Upadhyay S, Chetana S, Gururani P, Kimothi S. Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Inorg Chem Commun. 2022; 145:110040. https://doi.org/10.1016/j.cej.2011.01.069 DOI: https://doi.org/10.1016/j.inoche.2022.110040

Tatarchuk T, Shyichuk A, Sojka Z, Grybo´s J, Naushad M, Kotsyubynsky V, Kowalska M, Kwiatkowska-Marks S. Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. J Mol Liq. 2021; 328:115375. https://doi.org/10.1016/j.molliq.2021.115375 DOI: https://doi.org/10.1016/j.molliq.2021.115375