Enhancing Agricultural Sustainability through Microbial-Mediated Abiotic Stress Tolerance

Jump To References Section

Authors

  • Biotechnology Program, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Biochemistry, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Microbiology, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Biochemistry, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Environmental Sciences, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Institute of Food Processing and Technology, University of Lucknow, Lucknow - 226007, Uttar Pradesh ,IN
  • Biotechnology Program, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Biochemistry, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jeoh/2023/34777

Keywords:

Abiotic stress, Biostimulants, Microbe, Mycorrhiza, PGPR, Sustainable Agriculture

Abstract

Global environmental problems lead to plants life extremely stressful. Plants are exposed to more prevalent incidences of abiotic stresses like salinity, drought, high temperature, etc. The most significant factors that reduce agricultural productivity are abiotic stresses. Plants are part of ecosystem entities, and the future of sustainable agriculture will be based on the exploitation of the potential of plant-associated microbial communities. Microorganisms produce significant amounts of metabolites that help plants to cope with these stresses. Plants interactions with microorganisms create a diverse ecosystem in which both partners occasionally share a cooperative relationship. This review emphasizes the plant-microbe interactions and provides a roadmap that how microorganisms such as Arbuscular Mycorrhizal Fungi, Plant Growth Promoting Rhizobacteria and endophytes are used to mitigate the negative effects of various stresses to improve crop productivity. This review also elaborates molecular and biochemical mechanisms in plants and microbes to tolerate abiotic stress. Furthermore, the most recent developments in the study of plant-microbe intermodulation with a novel approach will allow us to use a multifaceted tool “biostimulants” against abiotic stress. The important challenges of commercializing biostimulants for improving crop yield under several plant growth environmental constraints are also included in this review. As a result, the purpose of this review is to illustrate the effects of different abiotic stressors on plants, as well as the role of beneficial plant microbes in helping to overcome the negative impact of abiotic stresses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-23

How to Cite

Singh, P., Rayeen, F., Singh, R., Pathak, N., Singh, R. P., Tiwari, V., Tripathi, M., & Singh, P. K. (2023). Enhancing Agricultural Sustainability through Microbial-Mediated Abiotic Stress Tolerance. Journal of Ecophysiology and Occupational Health, 23(4), 233–247. https://doi.org/10.18311/jeoh/2023/34777

Issue

Section

Review Article
Received 2023-08-18
Accepted 2023-10-03
Published 2023-11-23

 

References

Mohanty P, Singh PK, Chakraborty D, Mishra S, Pattnaik R. Insight into the role of PGPR in sustainable agriculture and environment. Front Sustain Food Syst. 2021; 5. https://doi. org/10.3389/fsufs.2021.667150 DOI: https://doi.org/10.3389/fsufs.2021.667150

Shah A, et al. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front Sustain Food Syst. 2021; 5. https://doi.org/10.3389/fsufs.2021.667546 DOI: https://doi.org/10.3389/fsufs.2021.667546

Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plantmicrobiome interactions. Mol Plant. 2019; 12(6):804–21. https://doi.org/10.1016/j.molp.2019.05.006 PMid:31128275 DOI: https://doi.org/10.1016/j.molp.2019.05.006

Malgioglio G, et al. Plant-microbe interaction in sustainable agriculture: The factors that may influence the efficacy of PGPM application. Sustainability. 2022; 14(4):2253. https://doi.org/10.3390/su14042253 DOI: https://doi.org/10.3390/su14042253

Umesha S, Singh PK, Singh RP. Microbial biotechnology and sustainable agriculture, in biotechnology for sustainable agriculture edited by Singh RL, and Mondal S. Elsevier. (Woodhead Publishing). 2017; 185-205. https://doi.org/10.1016/B978-0-12-812160-3.00006-4 DOI: https://doi.org/10.1016/B978-0-12-812160-3.00006-4

Lal MK, et al. Mechanistic concept of physiological, biochemical, and molecular responses of the potato crop to heat and drought stress. Plants. 2022; 11(21):2857. https://doi.org/10.3390/plants11212857 PMid:36365310 PMCid: PMC9654185 DOI: https://doi.org/10.3390/plants11212857

Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Cura JA. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A review. Cells. 2021; 10(6):1551. https://doi.org/10.3390/cells10061551 PMid:34205352 PMCid: PMC8234610 DOI: https://doi.org/10.3390/cells10061551

Verma KK, et al. The interactive role of silicon and plant– rhizobacteria mitigating abiotic stresses: A new approach for sustainable agriculture and climate change. Plants. 2020; 9 (9):1055. https://doi.org/10.3390/plants9091055 PMid:32824916 PMCid: PMC7569970 DOI: https://doi.org/10.3390/plants9091055

Kumar M, et al. The synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpeas (Cicer arietinum L.). Plant Signal Behav. 2016; 11(1):e1071004. https://doi.org/10.1080/15592324.20 15.1071004 PMid:26362119 PMCid: PMC4871671 DOI: https://doi.org/10.1080/15592324.2015.1071004

Jalal A, et al. Regulatory mechanisms of plant growthpromoting rhizobacteria and plant nutrition against abiotic stresses in Brassicaceae family. Life. 2023; 13(1). https://doi.org/10.3390/life13010211 PMid:36676160 PMCid: PMC9860783 DOI: https://doi.org/10.3390/life13010211

Ait-El-Mokhtar M, Ben Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic. (Amsterdam). 2019; 253:429–38. https://doi.org/10.1016/j.scienta.2019.04.066 DOI: https://doi.org/10.1016/j.scienta.2019.04.066

Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front Plant Sci. 2019; (10). https://doi.org/10.3389/fpls.2019.00470 PMid:31031793 PMCid: PMC6473083 DOI: https://doi.org/10.3389/fpls.2019.00470

Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na (+) root-toshoot distribution. Mycorrhiza. 2016; 26(7):673–84. https://doi.org/10.1007/s00572-016-0704-5 PMid:27113587 DOI: https://doi.org/10.1007/s00572-016-0704-5

Sandrini M, Nerva L, Sillo F, Balestrini R, Chitarra W, Zampieri E. Abiotic stress and below-ground microbiome: the potential of omics approaches. Int J Mol Sci. 2022; 23(3):1091. https://doi.org/10.3390/ijms23031091 PMid:35163015 PMCid: PMC8835006 DOI: https://doi.org/10.3390/ijms23031091

Umar OB, et al. Stresses in plants: biotic and abiotic. In current trends in wheat research. IntechOpen, 2022. https:// doi.org/10.5772/intechopen.100501 16. Zhang H, Zhu J, Gong Z, Zhu JK. Abiotic stress responses in plants. Nat Rev Genet. 2022; 23(2):104–19. https://doi.org/10.1038/s41576-021-00413-0 PMid:34561623

Lohani N, Jain D, Singh MB, Bhalla PL. Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front Plant Sci. 2020; 11. https://doi.org/10.3389/fpls.2020.00003 PMid:32161602 PMCid: PMC7052498 DOI: https://doi.org/10.3389/fpls.2020.00003

Nephali L, et al. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites. 2020; 10(12):505. https://doi.org/10.3390/metabo10120505 PMid:33321781 PMCid: PMC7764227 DOI: https://doi.org/10.3390/metabo10120505

The Core Writing Team IPCC, Climate Change 2014: Synthesis Report. Contribution of working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC; 2015.

Manning DAC. Mineral sources of potassium for plant nutrition. A review. Agron Sustain Dev. 2010; 30(2):281– 94. https://doi.org/10.1051/agro/2009023 DOI: https://doi.org/10.1051/agro/2009023

Buvaneshwari S, et al. Potash fertilizer promotes incipient salinization in groundwater-irrigated semi-arid agriculture. Sci Rep. 2020; 10(1). https://doi.org/10.1038/s41598-020- 60365-z PMid:32111896 PMCid: PMC7048856 DOI: https://doi.org/10.1038/s41598-020-60365-z

Balasuriya A. Coastal area management: Biodiversity and ecological sustainability in Sri Lankan perspective. Biodivers Clim Chang Adapt Trop Islands. 2018; 701–24. https://doi.org/10.1016/B978-0-12-813064-3.00025-9 DOI: https://doi.org/10.1016/B978-0-12-813064-3.00025-9

Banerjee S, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019; 13(7):1722–36. https://doi.org/10.1038/s41396-019-0383-2 PMid:30850707 PMCid: PMC6591126 DOI: https://doi.org/10.1038/s41396-019-0383-2

Singh PK, Singh P, Singh RP, Singh RL. Transgenesis in plants: Principle and methods. plant genomics for sustainable agriculture. Singapore: Springer; 2022. https://doi.org/10.1007/978-981-16-6974-3_3 DOI: https://doi.org/10.1007/978-981-16-6974-3_3

Nejat N, Mantri N. Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol. 2017; 23:1–16. https://doi.org/10.21775/cimb.023.001 PMid:28154243 DOI: https://doi.org/10.21775/cimb.023.001

Shabala S, Wu H, Bose J. Salt stress sensing and early signalling events in plant roots: Current knowledge and hypothesis. Plant Sci. 2015; 241:109–19. https://doi. org/10.1016/j.plantsci.2015.10.003 PMid:26706063 DOI: https://doi.org/10.1016/j.plantsci.2015.10.003

Gupta A, Rai S, Bano A, Khanam A, Sharma S, Pathak N. Comparative evaluation of different salt-tolerant plant growth-promoting bacterial isolates in mitigating the induced adverse effect of salinity in Pisum sativum. Biointerface Res Appl Chem. 2021; 11(5):13141–54. https://doi.org/10.33263/BRIAC115.1314113154 DOI: https://doi.org/10.33263/BRIAC115.1314113154

Zorb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol (Stuttg). 2019; 21(1):31–8. https://doi.org/10.1111/ plb.12884 PMid:30059606 DOI: https://doi.org/10.1111/plb.12884

Morcillo RJL, Manzanera M. The effects of plant-associated bacterial exo-polysaccharides on plant abiotic stress tolerance. Metabolites. 2021; 11(6): https://doi.org/10.3390/ metabo11060337 PMid:34074032 PMCid: PMC8225083 DOI: https://doi.org/10.3390/metabo11060337

Orlando M, Molla G, Castellani P, Pirillo V, Torretta V, Ferronato N. Microbial enzyme biotechnology to reach plastic waste circularity: Current status, problems and perspectives. Int J Mol Sci. 2023; 24(4). https://doi.org/10.3390/ijms24043877 PMid:36835289 PMCid: PMC9967032 DOI: https://doi.org/10.3390/ijms24043877

Rattan A, Kapoor D, Kapoor AN, Sharma A. Involvement of brassinosteroids in plant response to salt stress. Brassinosteroids Plant Dev Biol Stress Toler. 2022; 237–53. https://doi.org/10.1016/B978-0-12-813227-2.00003-5 DOI: https://doi.org/10.1016/B978-0-12-813227-2.00003-5

Perri S, Entekhabi D, Molini A. Plant osmoregulation as an emergent water-saving adaptation. Water Resour Res. 2018; 54(4):2781–98. https://doi.org/10.1002/2017WR022319 DOI: https://doi.org/10.1002/2017WR022319

Wani KI, Naeem M, Castroverde CDM, Kalaji HM, Albaqami M, Aftab T. Molecular mechanisms of Nitric Oxide (NO) signalling and Reactive Oxygen Species (ROS) homeostasis during abiotic stresses in plants. Int J Mol Sci. 2021; 22(17). https://doi.org/10.3390/ijms22179656 PMid:34502565 PMCid: PMC8432174 DOI: https://doi.org/10.3390/ijms22179656

Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017; 90(5):856–67. https://doi.org/10.1111/tpj.13299 PMid:27801967 DOI: https://doi.org/10.1111/tpj.13299

Alizadeh MR, Adamowski J, Nikoo MR, AghaKouchak A, Dennison P, Sadegh M. A century of observations reveals the increasing likelihood of continental-scale compound dryhot extremes. Sci Adv. 2020; 6(39). https://doi.org/10.1126/ sciadv.aaz4571 PMid:32967839 PMCid: PMC7531886 DOI: https://doi.org/10.1126/sciadv.aaz4571

Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016; 529(7584):84–7. https://doi.org/10.1038/nature16467 PMid: 26738594 DOI: https://doi.org/10.1038/nature16467

Ma Y, Dias MC, Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. 2020; 11: 591911. https://doi.org/10.3389/ fpls.2020.591911 PMid:33281852 PMCid: PMC7691295 DOI: https://doi.org/10.3389/fpls.2020.591911

Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ. 2022; 4(1):4–18. https://doi.org/10.1038/s43017-022-00366-w DOI: https://doi.org/10.1038/s43017-022-00366-w

Shekhawat K, Almeida-Trapp M, Garcia-Ramirez GX, Hirt H. Beat the heat: Plant- and microbe-mediated strategies for crop thermotolerance. Trends Plant Sci. 2022; 27(8): 802–13. https://doi.org/10.1016/j.tplants.2022.02.008 PMid:35331665 DOI: https://doi.org/10.1016/j.tplants.2022.02.008

Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv Exp Med Biol. 2018; 1081:215–32. https://doi.org/10.1007/978-981-13-1244- 1_12 PMid:30288712 DOI: https://doi.org/10.1007/978-981-13-1244-1_12

Liu H, et al. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int J Mol Sci. 2022; 23. https://doi.org/10.3390/ijms232314824 PMid:36499153 PMCid: PMC9736234 DOI: https://doi.org/10.3390/ijms232314824

Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant responses to abiotic stresses and rhizobacterial biostimulants: metabolomics and epigenetics perspectives. Metabolites. 2021; 11. https://doi.org/10.3390/ metabo11070457 PMid:34357351 PMCid: PMC8305699 DOI: https://doi.org/10.3390/metabo11070457

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signalling, and functions in plants. J Integr Plant Biol. 2020; 62(1):25–54. https://doi. org/10.1111/jipb.12899 PMid:31850654 DOI: https://doi.org/10.1111/jipb.12899

Mavrodi DV, et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front Plant Sci. 2018; (9):1–15. https://doi.org/10.3389/ fpls.2018.00345 PMid:29619036 PMCid: PMC5871930

Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticide toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 2021; 9(3):42. https://doi.org/10.3390/ toxics9030042 PMid:33668829 PMCid: PMC7996329 DOI: https://doi.org/10.3390/toxics9030042

Varma S, Ekta, Jangra M. Heavy metals stress and defence strategies in plants: An overview. J Pharmacogn Phytochem. 2021; 10(1):608-14.

Goyal, D, et al. Effect of heavy metals on plant growth: An overview. In: Naeem M, Ansari A, Gill S, editors. Contaminants in Agriculture. Springer, Cham; 2020. https://doi.org/10.1007/978-3-030-41552-5_4 DOI: https://doi.org/10.1007/978-3-030-41552-5_4

Montiel-Rozas MM, Madejon E, Madejon P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ Pollut. 2016; 216:273–81. https:// doi.org/10.1016/j.envpol.2016.05.080 PMid:27267743 DOI: https://doi.org/10.1016/j.envpol.2016.05.080

Riyazuddin R, et al. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2021; 12(1):43. https://doi.org/10.3390/biom12010043 PMid:35053191 PMCid: PMC8774178 DOI: https://doi.org/10.3390/biom12010043

Suzuki N. Temperature stress and responses in plants. Int J Mol Sci. 2019; 20(8). https://doi.org/10.3390/ijms20082001 PMid:31022827 PMCid: PMC6514902 DOI: https://doi.org/10.3390/ijms20082001

Zhang H, Zhu J, Gong Z, Zhu JK. Abiotic stress responses in plants. Nat Rev Genet. 2022; 23(2):104–19. https://doi. org/10.1038/s41576-021-00413-0 PMid:34561623 DOI: https://doi.org/10.1038/s41576-021-00413-0

Ritonga FN, Chen S. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants. 2020; 9(5):560. https://doi.org/10.3390/plants9050560 PMid:32353940 PMCid: PMC7284489 DOI: https://doi.org/10.3390/plants9050560

Fahad S, et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017; 8. https://doi.org/10.3389/fpls.2017.01147 PMid:28706531 PMCid: PMC5489704 DOI: https://doi.org/10.3389/fpls.2017.01147

Zhu JK. Abiotic stress signalling and responses in plants. Cell. 2016; 167(2):313–24. https://doi.org/10.1016/j. cell.2016.08.029 PMid:27716505 PMCid: PMC5104190 DOI: https://doi.org/10.1016/j.cell.2016.08.029

Bhattacharya A. Effect of low-temperature stress on photosynthesis and allied traits: A review. Physiol Process. Plants Under Low Temp Stress. 2022; 199–297. https://doi. org/10.1007/978-981-16-9037-2_3 DOI: https://doi.org/10.1007/978-981-16-9037-2_3

Nievola CC, Carvalho CP, Carvalho V, Rodrigues E. Rapid responses of plants to temperature changes. Temperature. 2017; 4(4):371–405. https://doi.org/10.1080/23328940.201 7.1377812 PMid:29435478 PMCid: PMC5800372 DOI: https://doi.org/10.1080/23328940.2017.1377812

Mittler R, Zandalinas SI, Fichman Y, Van BF. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol. 2022; 23(10):663–79. https://doi.org/10.1038/ s41580-022-00499-2 PMid:35760900 DOI: https://doi.org/10.1038/s41580-022-00499-2

Haider S, et al. Molecular mechanisms of plant tolerance to heat stress: Current landscape and future perspectives. Plant Cell Rep. 2021; 40(12):2247–71. https://doi.org/10.1007/ s00299-021-02696-3 PMid: 33890138 DOI: https://doi.org/10.1007/s00299-021-02696-3

Xun W, Shao J, Shen Q, Zhang R. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Computational and Structural Biotechnology Journal. 2021; 19:5487–93. https://doi.org/10.1016/j.csbj.2021.09.035 PMid:34712394 PMCid: PMC8515068 DOI: https://doi.org/10.1016/j.csbj.2021.09.035

Forni C, Duca D, Glick BR. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil. 2017; 410(1–2):335–56. https://doi.org/10.1007/ s11104-016-3007-x DOI: https://doi.org/10.1007/s11104-016-3007-x

Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci. 2020; 10. https://doi.org/10.3389/fpls.2019.01741 PMid:32038698 PMCid: PMC6992662 DOI: https://doi.org/10.3389/fpls.2019.01741

Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy. 2020; 10(6):794. https://doi.org/10.3390/ agronomy10060794 DOI: https://doi.org/10.3390/agronomy10060794

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity. 2020; 12(10):370. https://doi.org/10.3390/d12100370 DOI: https://doi.org/10.3390/d12100370

Vafadar F, Amooaghaie R, Otroshy M. Effects of plantgrowth- promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact. 2014; 9(1):128–36. https://doi.org/10.1080/17429145.2013 .779035 DOI: https://doi.org/10.1080/17429145.2013.779035

Kumawat KC, et al. Dual microbial inoculation, a game changer? – Bacterial biostimulants with multifunctional growth-promoting traits to mitigate salinity stress in spring mungbean. Front Microbiol. 2021; 11:600576. https://doi.org/10.3389/fmicb.2020.600576 PMid:33584566 PMCid: PMC7874087 DOI: https://doi.org/10.3389/fmicb.2020.600576

Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res. 2021; 249:126771. https://doi.org/10.1016/j. micres.2021.126771 PMid:33930840 DOI: https://doi.org/10.1016/j.micres.2021.126771

Saxena R, Kumar M, Tomar RS. Plant–rhizobacteria interactions to induce biotic and abiotic stress tolerance in plants. 2021; 1–18. https://doi.org/10.1007/978-981-16- 3364-5_1 DOI: https://doi.org/10.1007/978-981-16-3364-5_1

Singh RP, Singh PK, Gupta R, Singh RL. Biotechnological tools to enhance sustainable production, in biotechnology for sustainable agriculture edited by Singh RL, and Mondal S. Elsevier. (Woodhead Publishing); 2018. p. 19-66. https:// doi.org/10.1016/B978-0-12-812160-3.00002-7 DOI: https://doi.org/10.1016/B978-0-12-812160-3.00002-7

Morelli M, Bahar O, Papadopoulou KK, Hopkins DL, Obradovic A. Editorial: Role of endophytes in plant health and defence against pathogens. Front. Plant Sci. 2020; 11: 577603. https://doi.org/10.3389/fpls.2020.01312 PMid:32983202 PMCid: PMC7479191 DOI: https://doi.org/10.3389/fpls.2020.01312

Bacon CW, White JF. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis. 2016; 68(1–3):87–98. https://doi. org/10.1007/s13199-015-0350-2 DOI: https://doi.org/10.1007/s13199-015-0350-2

White JF, et al. Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant Soil. 2018; 422(1–2):195–208. https://doi.org/10.1007/s11104- 016-3169-6 DOI: https://doi.org/10.1007/s11104-016-3169-6

Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscular formation and responses to abiotic stresses during AM symbiosis. Front Microbiol. 2018; 9. https://doi.org/10.3389/ fmicb.2018.00091 PMid:29556216 PMCid: PMC5844941 DOI: https://doi.org/10.3389/fmicb.2018.00091

Riaz M, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard Mater. 2021; 402:123919. https://doi.org/10.1016/j.jhazmat.2020.123919 PMid:33254825 DOI: https://doi.org/10.1016/j.jhazmat.2020.123919

Wu QS, Zou YN. Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In arbuscular mycorrhizas and stress tolerance of plants, Singapore: Springer Singapore; 2017. p. 25–41. https://doi.org/10.1007/978-981-10-4115-0_2 DOI: https://doi.org/10.1007/978-981-10-4115-0_2

Kohl L, Lukasiewicz CE, van der Heijden MGA. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant Cell Environ. 2016; 39(1):136–46. https://doi.org/10.1111/pce.12600 PMid:26147222 DOI: https://doi.org/10.1111/pce.12600

Chen S, et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol. 2017; 8. https://doi.org/10.3389/fmicb.2017.02516 PMid: 29312217 PMCid: PMC5742139 DOI: https://doi.org/10.3389/fmicb.2017.02516

Li, Z. Wu N, Meng S, Wu F, Liu T. Arbuscular Mycorrhizal Fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One. 2022; 15(4):e0231497. https://doi.org/10.1371/journal. pone.0231497 PMid:32287291 PMCid: PMC7156074 DOI: https://doi.org/10.1371/journal.pone.0231497

Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SkZ. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res. 2016; 184:13–24. https://doi.org/10.1016/j.micres.2015.12.003 PMid:26856449 DOI: https://doi.org/10.1016/j.micres.2015.12.003

Jha Y, et al. Bacterial-induced expression of RAB18 protein in Oryza sativa salinity stress and insights into molecular interaction with GTP ligand. J Mol Recognit. 2014; 27(9): 521–7. https://doi.org/10.1002/jmr.2371 PMid:25042706 DOI: https://doi.org/10.1002/jmr.2371

Singh S. A review on possible elicitor molecules of cyanobacteria: Their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol. 2014; 117(5):1221–44. https://doi.org/10.1111/ jam.12612 PMid:25069397 DOI: https://doi.org/10.1111/jam.12612

Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 2010; 232(2):533–43. https://doi. org/10.1007/s00425-010-1196-8 PMid:20499084 DOI: https://doi.org/10.1007/s00425-010-1196-8

Del-Amor FM, Cuadra-Crespo P. Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol. 2012; 39(1):82–90. https://doi. org/10.1071/FP11173 PMid:32480762 DOI: https://doi.org/10.1071/FP11173

Barka EA, Nowak J, Clement C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN. Appl Environ Microbiol. 2006; 72(11):7246–52. https://doi.org/10.1128/AEM.01047-06 PMid:16980419 PMCid: PMC1636148 DOI: https://doi.org/10.1128/AEM.01047-06

Dardanelli MS, et al. Effect of Azospirillum brasilense inoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol. Biochem. 2008; 40(11):2713–21. https://doi.org/10.1016/j. soilbio.2008.06.016 DOI: https://doi.org/10.1016/j.soilbio.2008.06.016

Etesami H, Maheshwari DK. Use of Plant Growth Promoting Rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and prospects. Ecotoxicol Environ Saf. 2018; 156:225–46. https://doi.org/10.1016/j.ecoenv.2018.03.013 PMid:29554608 DOI: https://doi.org/10.1016/j.ecoenv.2018.03.013

Singh SK, Wu X, Shao C, Zhang H. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2022; 2(1):1– 14. https://doi.org/10.1007/s44154-021-00027-w PMid:37676341 PMCid: PMC10441942 DOI: https://doi.org/10.1007/s44154-021-00027-w

Fujita Y, Uesaka K. Nitrogen fixation in cyanobacteria. Cyanobacterial Physiol from Fundam to Biotechnol. 2022; 29–45. https://doi.org/10.1016/B978-0-323-96106- 6.00007-1 PMid:36413373 PMCid: PMC9695160 DOI: https://doi.org/10.1016/B978-0-323-96106-6.00007-1

Bechtaoui N, Rabiu MK, Raklami A, Oufdou K, Hafidi M, Jemo M. Phosphate-dependent regulation of growth and stresses management in plants. Front Plant Sci. 2021; 12:679916. https://doi.org/10.3389/fpls.2021.679916 PMid:34777404 PMCid: PMC8581177 DOI: https://doi.org/10.3389/fpls.2021.679916

Kalayu G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int J Agron. 2019. https://doi.org/10.1155/2019/4917256 DOI: https://doi.org/10.1155/2019/4917256

Ribeiro M, Simoes M. Siderophores: A novel approach to fight antimicrobial resistance. In: Arora D, Sharma C, Jaglan S, Lichtfouse E, editors. Pharmaceuticals from microbes. Environmental Chemistry for a Sustainable World. Springer, Cham; 2019. https://doi.org/10.1007/978- 3-030-04675-0_5

Mukherjee A, et al. The bioactive potential of phytohormones: A review. Biotechnol Reports. 2022; 35:e00748. https://doi.org/10.1016/j.btre.2022.e00748 PMid:35719852 PMCid: PMC9204661 DOI: https://doi.org/10.1016/j.btre.2022.e00748

Upadhyay SK, et al. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front. Microbiol. 2022; 13:916488. https://doi. org/10.3389/fmicb.2022.916488 PMid:35910633 PMCid: PMC9329127 DOI: https://doi.org/10.3389/fmicb.2022.916488

Meena M, et al. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol. 2020; 60(10):828–61. https://doi.org/10.1002/ jobm.202000370 PMid:32815221 DOI: https://doi.org/10.1002/jobm.202000370

Zhang H, Zhao Y, Zhu JK. Thriving under stress: How plants balance growth and the stress response. Dev Cell. 2020; 55(5):529–43. https://doi.org/10.1016/j.devcel.2020.10.012 PMid:33290694 DOI: https://doi.org/10.1016/j.devcel.2020.10.012

Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016; 7:219261. https://doi. org/10.3389/fmicb.2016.01538 PMid:27746767 PMCid: PMC5041141 DOI: https://doi.org/10.3389/fmicb.2016.01538

Begum N, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front Plant Sci. 2019; 10:466052. https://doi.org/10.3389/ fpls.2019.01068 PMid:31608075 PMCid: PMC6761482 DOI: https://doi.org/10.3389/fpls.2019.01068

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019; 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001 PMid:30825940 DOI: https://doi.org/10.1016/j.micres.2019.02.001

Liu H, Brettell LE, Qiu Z, Singh BK. Microbiomemediated stress resistance in plants. Trends Plant Sci. 2020; 25(8):733–43. https://doi.org/10.1016/j. tplants.2020.03.014 PMid:32345569 DOI: https://doi.org/10.1016/j.tplants.2020.03.014

Gupta A, Bano A, Rai S, Dubey P, Khan F, Pathak N, Sharma S. Plant Growth Promoting Rhizobacteria (PGPR): A sustainable agriculture to rescue the vegetation from the effect of biotic stress: A review. Lett Appl Nano Bio Science. 2021; 10(3):2459–65. https://doi.org/10.33263/ LIANBS103.24592465 DOI: https://doi.org/10.33263/LIANBS103.24592465

Mahanty T, et al. Biofertilizers: A potential approach for sustainable agriculture development. Environ Sci Pollut. Res. 2017; 24(4):3315–35. https://doi.org/10.1007/ s11356-016-8104-0 PMid:27888482 DOI: https://doi.org/10.1007/s11356-016-8104-0

Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK. Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology. Elsevier; 2019. p. 101326. https://doi.org/10.1016/j.bcab.2019.101326 DOI: https://doi.org/10.1016/j.bcab.2019.101326

Kamran M, Imran QM, Ahmed MB, Falak N, Khatoon A, Yun BW. Endophyte-mediated stress tolerance in plants: A sustainable strategy to enhance resilience and assist crop improvement. Cells. 2022; 11:3292. https:// doi.org/10.3390/cells11203292 PMid:36291157 PMCid: PMC9600683 DOI: https://doi.org/10.3390/cells11203292

Raza A, et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants (Basel, Switzerland). 2019; 8(2). https://doi.org/10.3390/ plants8020034 PMid:30704089 PMCid: PMC6409995 DOI: https://doi.org/10.3390/plants8020034

Raza A, Ashraf F, Zou X, Zhang X, Tosif H. Plant adaptation and tolerance to environmental stresses: Mechanisms and perspectives. In plant ecophysiology and adaptation under climate change: Mechanisms and perspectives I, Singapore: Springer Singapore. 2020; 117–45. https://doi. org/10.1007/978-981-15-2156-0_5 DOI: https://doi.org/10.1007/978-981-15-2156-0_5

Ilangumaran G, Smith DL. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Front Plant Sci. 2017; 8. https://doi. org/10.3389/fpls.2017.01768 PMid:29109733 PMCid: PMC5660262 DOI: https://doi.org/10.3389/fpls.2017.01768

Etesami H, Adl, SM. Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes: A review. Rhizosphere. 2020; 15:100229. https://doi.org/10.1016/j. rhisph.2020.100229 DOI: https://doi.org/10.1016/j.rhisph.2020.100229

Khan N, Bano A, Shahid MA, Nasim W, Ali MB. Interaction between PGPR and PGR for water conservation and plant growth attributes under drought conditions. Biologia (Bratisl). 2018; 73(11):1083–98. https://doi.org/10.2478/ s11756-018-0127-1 DOI: https://doi.org/10.2478/s11756-018-0127-1

Farooq MA, et al. Acquiring control: The evolution of ROSInduced oxidative stress and redox signalling pathways in plant stress responses. Plant Physiol. Biochem. 2019; 141:353–69. https://doi.org/10.1016/j.plaphy.2019.04.039 PMid:31207496 DOI: https://doi.org/10.1016/j.plaphy.2019.04.039

Porcel R, Zamarreno A, Garcia-Mina J, Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 2014; 14(1):36. https://doi.org/10.1186/1471-2229- 14-36 PMid:24460926 PMCid: PMC3903769 DOI: https://doi.org/10.1186/1471-2229-14-36

Duan B, et al. 1-Aminocyclopropane-1-carboxylate deaminase-producing plant growth-promoting rhizobacteria improve drought stress tolerance in grapevine (Vitis vinifera L.). Front Plant Sci. 2021; 12. https://doi.org/10.3389/fpls.2021.706990 PMid:37388278 PMCid: PMC10305780 DOI: https://doi.org/10.3389/fpls.2021.706990

Omae N, Tsuda K. Plant-microbiota interactions in abiotic stress environments. Mol Plant- Microbe Interact. 2022; 35(7):511–26. https:// doi .org/10.1094/MPMI-11-21-0281-FI PMid:35322689 DOI: https://doi.org/10.1094/MPMI-11-21-0281-FI

Nanda M, Kumar V, Sharma DK. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean up’ heavy metal contaminants from water. Aquatic Toxicol. 2019; 212:1–10. https://doi.org/10.1016/j.aquatox.2019.04.011 PMid:31022608 DOI: https://doi.org/10.1016/j.aquatox.2019.04.011

Sports A, et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza. 2021; 31(6): 637–53. https://doi.org/10.1007/s00572-021-01053-2 PMid: 34657204 DOI: https://doi.org/10.1007/s00572-021-01053-2

Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manage. 2015; 151:160–6. https://doi.org/10.1016/j. jenvman.2014.12.045 PMid:25575343 DOI: https://doi.org/10.1016/j.jenvman.2014.12.045

Shen FT, Yen JH, Liao CS, Chen WC, Chao YT. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability. 2019; 11(4):1133. https://doi.org/10.3390/su11041133 DOI: https://doi.org/10.3390/su11041133

Caverzan A, Casassola A, Brammer SP. Antioxidant responses of wheat plants under stress. Genet Mol Biol. 2016; 39(1):1–6. https://doi.org/10.1590/1678-4685- GMB-2015-0109 PMid:27007891 PMCid: PMC4807390 DOI: https://doi.org/10.1590/1678-4685-GMB-2015-0109

Rai N, Rai SP, Sarma BK. Prospects for abiotic stress tolerance in crops utilizing phyto and bio-stimulants. Front Sustain Food Syst. 2021; 5. https://doi.org/10.3389/ fsufs.2021.754853 DOI: https://doi.org/10.3389/fsufs.2021.754853

Maharshi A, Rashid MM, Teli B, Yadav SK, Singh DP, Sarma BK. Salt stress alters the pathogenic behaviour of Fusarium oxysporum f. sp. ciceris and contributes to the severity of chickpea wilt incidence. Physiol Mol Plant Pathol. 2021; 113:101602. https://doi.org/10.1016/j. pmpp.2021.101602 DOI: https://doi.org/10.1016/j.pmpp.2021.101602

Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: A global perspective. Front Plant Sci. 2017; 7. https://doi.org/10.3389/fpls.2016.02049 PMid:28184225 PMCid: PMC5266735 DOI: https://doi.org/10.3389/fpls.2016.02049

du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci Hortic. (Amsterdam). 2015; 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021

de Vasconcelos CFA, Chaves HGL. Biostimulants and their role in improving plant growth under abiotic stresses. In Biostimulants in Plant Science. IntechOpen; 2020. https://doi.org/10.5772/intechopen.88829

Boundless, 30.21. Plant Sensory Systems and Responses- Auxins, Cytokinins, and Gibberellins. Biology Libre Texts; 2022. https://bio.libretexts.org/Bookshelves/ Introductory_and_General_Biology/Book%3A_ General_Biology_(Boundless)/30%3A_Plant_Form_ and_Physiology/30.21%3A_Plant_Sensory_Systems_ and_Responses_-_Auxins_Cytokinins_and_Gibberellins.

Shah SH, Islam S, Mohammad F, Siddiqui MH. Gibberellic acid: A versatile regulator of plant growth, development and stress responses. J Plant Growth Regul. 2023. https://doi.org/10.1007/s00344-023-11035-7 DOI: https://doi.org/10.1007/s00344-023-11035-7

Sosnowski J, Król J, Truba M. The effects of indole-3- butyric acid and 6-benzyloaminopuryn on Fabaceae plants morphometrics. J Plant Interact. 2019; 14(1):603– 9. https://doi.org/10.1080/17429145.2019.1680753 DOI: https://doi.org/10.1080/17429145.2019.1680753

Kang SM, et al. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low-temperature stress in Capsicum annuum L. Eur J Soil Biol. 2015; 68:85– 93. https://doi.org/10.1016/j.ejsobi.2015.02.005 DOI: https://doi.org/10.1016/j.ejsobi.2015.02.005

Backer R, et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018; 9. https://doi. org/10.3389/fpls.2018.01473 PMid:30405652 PMCid: PMC6206271 DOI: https://doi.org/10.3389/fpls.2018.01473

Saleemi M, Kiani MZ, Sultan T, Khalid A, Mahmood S. Integrated effect of plant growth-promoting rhizobacteria and phosphate-solubilizing microorganisms on the growth of wheat (Triticum aestivum L.) under rainfed condition. Agric Food Security. 2017: 6(1):46. https://doi.org/10.1186/s40066-017-0123-7 DOI: https://doi.org/10.1186/s40066-017-0123-7

Gonzalez-Perez BK, Rivas-Castillo AM, Valdez-Calderón A, Gayosso-Morales MA. Microalgae as biostimulants: A new approach in agriculture. World J Microbiol Biotechnol. 2022; 38(1):4. https://doi.org/10.1007/ s11274-021-03192-2 PMid:34825262 DOI: https://doi.org/10.1007/s11274-021-03192-2

Ghaderiardakani F, Collas E, Damiano DK, Tagg K, Graham NS, Coates JC. Effects of green seaweed extract on Arabidopsis’s early development suggest roles for hormone signalling in plant responses to algal fertilizers. Sci Reports. 2019; 9:1–13. https://doi.org/10.1038/s41598- 018-38093-2 PMid:30760853 PMCid: PMC6374390 DOI: https://doi.org/10.1038/s41598-018-38093-2

de Vasconcelos ACF, Chaves LHG, de Vasconcelos ACF Chaves LHG. Biostimulants and their role in improving plant growth under abiotic stresses. Biostimulants Plant Sci. 2019. https://doi.org/10.5772/intechopen.88829 DOI: https://doi.org/10.5772/intechopen.88829

Lakshmi PK, Meenakshi S. Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production. New Futur Dev Microb Biotechnol Bioeng Sustain Agric Microorg as Biostimulants. 2022; 63–82. https://doi.org/10.1016/B978-0-323-85163- 3.00001-6 DOI: https://doi.org/10.1016/B978-0-323-85163-3.00001-6

Hines S, van der Zwan T, Shiell K, Shotton K, Prithiviraj B. Alkaline extract of the seaweed Ascophyllum nodosum stimulates arbuscular mycorrhizal fungi and their endomycorrhization of plant roots. Sci Reports. 2021; 11(1):1–12. https://doi.org/10.1038/s41598-021-93035-9 PMid:34188188 PMCid: PMC8241850 DOI: https://doi.org/10.1038/s41598-021-93035-9

Elansary HO, Skalicka-Woźniak K, King IW. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol Biochem. 2016; 105:310–20. https://doi.org/10.1016/j.plaphy.2016.05.024 PMid:27336837 DOI: https://doi.org/10.1016/j.plaphy.2016.05.024

Jamiołkowska A. Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy. 2020; 10(2):173. https://doi.org/10.3390/ agronomy10020173 DOI: https://doi.org/10.3390/agronomy10020173

Mohamed De ES, Mohamed Me AR, Salah Elry A. Response of pea plants to natural bio-stimulants under soil salinity stress. Am J Plant Physiol. 2016; 12(1):28–37. https://doi.org/10.3923/ajpp.2017.28.37 DOI: https://doi.org/10.3923/ajpp.2017.28.37

Bastias DA, Johnson LJ, Card SD. Symbiotic bacteria of plant-associated fungi: Friends or foes? Curr Opin Plant Biol. 2020; 56:1–8. https://doi.org/10.1016/j. pbi.2019.10.010 PMid:31786411 DOI: https://doi.org/10.1016/j.pbi.2019.10.010

Oliveira DM, et al. Cell wall remodelling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant Cell Environ. 2020; 43(9):2172–91. https://doi.org/10.1111/ pce.13805 PMid:32441772 DOI: https://doi.org/10.1111/pce.13805

Bradacova K, et al. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as coldstress protectants in maize. Chem Biol Technol Agric. 2016; 3(1):1–10. https://doi.org/10.1186/s40538-016- 0069-1 DOI: https://doi.org/10.1186/s40538-016-0069-1

Xu L, Geelen D. Developing biostimulants from agrofood and industrial by-products. Front Plant Sci. 2018; 9. https://doi.org/10.3389/fpls.2018.01567 PMid:30425724 PMCid: PMC6218572 DOI: https://doi.org/10.3389/fpls.2018.01567

Juarez-Maldonado A, et al. Nanoparticles and nanomaterials as plant biostimulants. Int J. Mol Sci. 2019; 20(1):162. https://doi.org/10.3390/ijms20010162 PMid:30621162 PMCid: PMC6337539 DOI: https://doi.org/10.3390/ijms20010162

Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015; 7(12):1584–94. https://doi. org/10.1039/C5MT00168D PMid:26463441 DOI: https://doi.org/10.1039/C5MT00168D