Bioprospecting: An innovative technology for the management of coffee collar rot disease

Jump To References Section

Authors

  • Plant Pathologist, Regional Coffee Research Station, Thandigudi, Kodaikanal – 624216, Tamil Nadu ,IN
  • Department of Plant Pathology, Annamalai University, Chidambaram – 608002, Tamil Nadu ,IN
  • Department of Plant Pathology, Annamalai University, Chidambaram – 608002, Tamil Nadu ,IN
  • Department of Agricultural Microbiology, Annamalai University, Chidambaram – 608002, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jbc/2022/33792

Keywords:

Bacillus subtilis, biocapsules, Pseudomonas fluorescens, Rhizoctonia solani, Trichoderma harzianum

Abstract

Coffee is an important beverage crop in India. The soil-borne pathogen, Rhizoctonia solani Khun is known to cause collar rot of coffee seedlings in the nursery itself and accounts for 10-25% mortality under conducive environmental conditions. This paper presents the efficacy of various microbial antagonists used in the form of biocapsules for management of coffee collar rot. Among the various antagonists used, Bacillus subtilis resulted in the maximum reduction of collar rot incidence compared to Trichoderma harzianum and Pseudomonas fluorescens.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-08

How to Cite

S. Soundara Rajan, T. Sivakumar, P. Balabaskar, & R. Parthasarathy. (2023). Bioprospecting: An innovative technology for the management of coffee collar rot disease. Journal of Biological Control, 36(4), 234–241. https://doi.org/10.18311/jbc/2022/33792

Issue

Section

Research Articles
Received 2023-05-14
Accepted 2023-07-21
Published 2023-08-08

 

References

Anbazhagan, P., Theradimani, M., Ramamoorthy, V., Vellaikumar, P. and Hepziba, S. J. 2022. Eco-friendly management of false smut disease of rice incited by Ustilaginoidea virens through the application of Trichoderma spp. J Biol Control, 36(1): 47-56. https:// doi.org/10.18311/jbc/2022/30756 DOI: https://doi.org/10.18311/jbc/2022/30756

Anbazhagan, P., Singh, R., Viswanath, H. S., Pandey, A. and Singh, A. K. 2020. Effect of Trichoderma harzianum and Pseudomonas fluorescens on the enhancement of drought tolerance and plant growth in tomato. Int Res J Pure Appl Chem, 21(23): 18-27. https://doi.org/10.9734/ irjpac/2020/v21i2330299 DOI: https://doi.org/10.9734/irjpac/2020/v21i2330299

Annual Report. 2023. Regional Coffee Research Station, Coffe Board, Thandigudi, Tamil Nadu.

Castellanos, E. J., Tucker, C., Eakin, H., Morales, H., Barrera, J. F. and Díaz, R. 2013. Assessing the adaptation strategies of farmers facing multiple stressors: Lessons from the Coffee and Global Changes project in Mesoamerica. Environ Sci Policy, 26: 19-28. https://doi.org/10.1016/j. envsci.2012.07.003 DOI: https://doi.org/10.1016/j.envsci.2012.07.003

Chanakya, H. N. and De Alwis, A. A. A. P. 2004. Environmental issues and management in primary coffee processing. Process Saf Environ Prot, 82(4): 291-300. https://doi. org/10.1205/095758204323162319 DOI: https://doi.org/10.1205/095758204323162319

Chen, C., Chen, J.-L. and Lin, T.-Y. 1997. Purification and characterization of a xylanase from Trichoderma longibrachiatum for xylooligosaccharide production. Enzyme Microb Technol, 21(2): 91-96. https://doi. org/10.1016/S0141-0229(96)00236-0 DOI: https://doi.org/10.1016/S0141-0229(96)00236-0

Elad, Y. and Baker, R. 1985. The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology, 75(9): 1053-1059. https://doi.org/10.1094/Phyto-75- 1053 DOI: https://doi.org/10.1094/Phyto-75-1053

Howell, C. R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis, 87(1): 4-10. https://doi.org/10.1094/PDIS.2003.87.1.4 DOI: https://doi.org/10.1094/PDIS.2003.87.1.4

Janisiewicz, W. J., Tworkoski, T. J. and Sharer, C. 2000. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology, 90(11): 1196-1200. https://doi.org/10.1094/ PHYTO.2000.90.11.1196 DOI: https://doi.org/10.1094/PHYTO.2000.90.11.1196

Jayalakshmi, R., Sobanbabu, G., Oviya, R., Mehetre, S. T., Kannan, R., Paramasivam, M., Santhanakrishnan, V. P., Kumar, K. K., Theradimani, M. and Ramamoorthy, V. 2021. Evaluation of gliotoxin phytotoxicity and gliotoxin producing Trichoderma virens for the suppression of damping off of tomato. J Biol Control, 35(3): 187-195. https://doi.org/10.18311//jbc/2021/27794 DOI: https://doi.org/10.18311//jbc/2021/27794

Masi, C, Dinnella, C., Monteleone, E. and Prescott, J. 2015. The impact of individual variations in taste sensitivity on coffee perceptions and preferences. Physiol Behav, 138: 219-226. https://doi.org/10.1016/j.physbeh.2014.10.031 DOI: https://doi.org/10.1016/j.physbeh.2014.10.031

Mussatto, S. I., Machado, E. M. S., Martins, S. and Teixeira, J. A. 2011. Production, composition, and application of coffee and its industrial residues. Food Bioproc Tech, 4: 661-672. https://doi.org/10.1007/s11947-011-0565-z Rajan, S. 2019. Symposium on plantation crops (PLACROSYM) XXIII, Chikkamagalur, Karnataka, 6-8 March 2019. DOI: https://doi.org/10.1007/s11947-011-0565-z

Rini, C. R. and Sulochana, K. K. 2007. Usefulness of Trichoderma and Pseudomonas against Rhizoctonia solani and Fusarium oxysporum infecting tomato. J Trop Agric, 45(1): 21-28.

Sudha, M., Giri, M. S., Machenahalli, S., Ranjini, A. P. and Rao, N. S. P. Effective management of collar rot disease caused by Rhizoctonia solani Kuhn. in coffee using native biocontrol isolates. J Mycopathol Res, 58(3): 187-191.

Valdez, R. B. and Acedo, J. A. 1963. An evaluation of fungicides for the control of damping-off of Coffee seedlings. Plant Dis Rep, 47: 176-179.

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. and Lorito, M. 2008. Trichoderma–plant– pathogen interactions. Soil Biol Biochem, 40(1): 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002 DOI: https://doi.org/10.1016/j.soilbio.2007.07.002