Finite Element Analysis of Hybrid Skin Sandwich Composite

Jump To References Section

Authors

  • Department of Mechanical and Automobile Engineering, CHRIST University, Bangalore -560074 ,IN
  • Department of Mechanical and Automobile Engineering, CHRIST University, Bangalore -560074 ,IN
  • Department of Mechanical and Automobile Engineering, CHRIST University, Bangalore -560074 ,IN
  • Department of Mechanical and Automobile Engineering, CHRIST University, Bangalore -560074 ,IN
  • Department of Mechanical Engineering, NMAM Institute of Technology, Nitte 574110, Karnataka ,IN
  • Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumkur 572103, Karnataka ,IN
  • Department of Mechanical Engineering, VTU, Bangalore, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32041

Keywords:

Sandwich Structured Composite, Aluminium Alloy, Areca Fibre, ANSYS Mechanical APDL.

Abstract

Sandwich structured composite is a particular classification in composite materials. This type of structure has been mainly used in recent studies because of its high specific strength, low density, and stiffness. It is increasingly more commonly employed in structural designs due to its features and performance. The sandwich composites used in this investigation are made of aluminium alloys and areca fibre. The sandwich composite’s face sheet comes in a variety of thicknesses. The adhesive skin layer is also varied to investigate the effect of using natural fibre. The sandwich composite is subjected to 3 point bend test. The modal analysis is investigated using the finite element method. The 3D model of sandwich composites is modelled using solid works 2020. Using Altair Hyper Works, the boundary conditions and meshing is carried out. ANSYS Mechanical APDL is used to analyse the sandwich composites. This investigation analyses the behaviour of composite sandwich beams.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Rao, A., Niranjana, S. J., Shivakumar, S., Kiran, K., ., S., Naresh, H., & Sampath, H. P. (2022). Finite Element Analysis of Hybrid Skin Sandwich Composite. Journal of Mines, Metals and Fuels, 70(8A), 188–199. https://doi.org/10.18311/jmmf/2022/32041

Issue

Section

Articles

 

References

Yang, B.Wang, Z .Zhou. L, Zhang.J, Tong.L, Liang, “Study on the low-velocity impact response and CAI behaviour of foam-filled sandwich panels with hybrid facesheet”. Composite Structure (2015).https://doi.org/10.1016/j.compstruct.2015.07.058. DOI: https://doi.org/10.1016/j.compstruct.2015.07.058

A.G.Mamalis, D.E Manolakas, M.B. Ionnaidis, D.P.Papapostolou, on the “compression of hybrid sandwich composites panels reinforced with internal tube inserts”. Composite Structures volume 56:2002. (191-199). DOI: https://doi.org/10.1016/S0263-8223(02)00003-X

Jae Hoon Kim, Young. Shin Lee, Byoung Jun. Park, Duck, “Mechanical Behaviour of Composite Sandwich Panels in Bending After Impact” University of Twente)

Satheesh.M, Pugazhvadivu. M, “Investigation on physical and mechanical properties of Al6061-Silicon Carbide (SiC)/Coconut shell ash (CSA) hybrid composites”. Physica B: Condensed Matter, 572(), 70–75 :( 2019). https://doi:10.1016/j.physb.2019.07.058. DOI: https://doi.org/10.1016/j.physb.2019.07.058

Chavhan, Ganesh R.; Wankhade, Lalit N.” Improvement of the mechanical properties of hybrid composites prepared by fibers, fiber-metals, and Nano- filler particles – A review”. Materials Today: Proceedings-S2214785319332316: (2019).https://doi:10.1016/j.matpr.2019.08.240. DOI: https://doi.org/10.1016/j.matpr.2019.08.240

Jezrael Rossetti; Moni Ribeiro Filho, Sergio Luiz; Christoforo, Andre´ Luis; Panzera, Tulio Hallak; Scarpa, Fabrizio. “Investigations on sustainable honeycomb sandwich panels containing eucalyptus sawdust, Piassava and cement particles”Thin-Walled Structures (2019), 143(),106191.https://doi:10.1016/j.tws.2019.106191. DOI: https://doi.org/10.1016/j.tws.2019.106191

Hassan Abdolpour, Julio Garzon-Roca and Pouya HMH Mameghani “Increasing flexural performance of hybrid sandwich panels by using strain hardening cementitious base composite and glass fiber-reinforced polymer” Journal of Composite Materials 2019, Vol. 53(1) 19_31.https://doi.org/10.1177/0021998318780206. DOI: https://doi.org/10.1177/0021998318780206

ZU, Guo-yin; LU, Ri-huan; LI, Xiao-bing; ZHONG, Zhao-yang; MA, Xing-jiang; HAN, Ming-bo; YAO, Guang-chun. “Three-point bending behavior of aluminum foam sandwich with steel panel”. Transactions of Nonferrous Metals Society of China, 23(9), 2491–2495 (2013). https://doi:10.1016/S1003-6326(13)62759-4. DOI: https://doi.org/10.1016/S1003-6326(13)62759-4

M.J. Mochane1, T.C. Mokhena, T.H. Mokhothu, A.Mtibe, E.R.Sadiku1, S.S.Ray, I.D. Ibrahim, O.O.Daramola. “Recent progress on natural fiber hybrid composites for advanced applications” (2019).https://doi.org/10.3144/expresspolymlett.2019.15 DOI: https://doi.org/10.3144/expresspolymlett.2019.15

Nicolas J. Lombardi; Judy Liu . “Glass fiber-reinforced polymer/steel hybrid honeycombsandwich concept for bridge deck applications” Composite structure Volume -93(4), 1275–1283 (2011). https://doi:10.1016/j.compstruct.2010.10.007. DOI: https://doi.org/10.1016/j.compstruct.2010.10.007

Zanagan, Sartip and Epaarachchi, Jayantha and Ferdous, Wahid and Leng, Jin-song. “A novel hybridised composite sandwich core with glass, kevlar and zylon fibres – investigation under low-velocity impact”. International Journal of Impact Engineering, 137:103430. pp. 1-10. ISSN 0734-743X.(2020) DOI: https://doi.org/10.1016/j.ijimpeng.2019.103430

Yu-Chien Ho, Jun Yanagimoto. “Effect of unidirectional prepreg size on punching of pseudo-ductile CFRP laminates and CFRP/metal hybrid composites”(16 November-2017). https://doi.org/10.1016/j.compstruct.2017.11.042. DOI: https://doi.org/10.1016/j.compstruct.2017.11.042

Ryu, Jaeho; Kim, Yong Yeal; Park, Man Woo; Yoon, Sung-Won; Lee, Chang- Hwan; Ju, Young K. “Experimental and numerical investigations of steel- polymer hybrid floor panels subjected to three-point bending”. Engineering Structures, 175,467–482:(2018). https://doi:10.1016/j.engstruct.2018.08.030 DOI: https://doi.org/10.1016/j.engstruct.2018.08.030

Kharghani, N; Guedes Soares, C. “Experimental and numerical study of hybrid steel-FRP balcony overhang of ships under shear and bending”. Marine Structures, 60, 15–33 (2018). https://doi:10.1016/j.marstruc.2018.03.003 DOI: https://doi.org/10.1016/j.marstruc.2018.03.003

E. Atabani, A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, H. Fayaz, Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew. Sustain. Energy Rev 18 (2013) 211–245. DOI: https://doi.org/10.1016/j.rser.2012.10.013

Niranjana SJ, Patel SV, Dubey AK. Design and analysis of vertical pressure vessel using ASME code and FEA technique. IOP Conf Ser, Mater Sci Eng. 2018;376:012135(012135):1–10. https://doi.org/10.1088/1757-899X/376/1/012135. DOI: https://doi.org/10.1088/1757-899X/376/1/012135

S. J. Niranjanaa*, S. S. Kubsadb, S. Manjunathac, Y. Nagarajd, I. Bhavie , B. M. Angadie , A. J. Chamkhaf, M. B. Vanarottig,” Experimental Investigation and Numerical Simulation of Air Circulation in a Non-AC Bus Coach System”. International Journal of Engineering. IJE Transactions C: Aspects Vol. 35, No. 03, (March 2022) 572-579. Doi: 10.5829/ije.2022.35.03c.10. DOI: https://doi.org/10.5829/IJE.2022.35.03C.10

Shravanabelagola Jinachandra N, Sadashivappa Kubsad S, Sarpabhushana M, Siddaramaiah S, Rajashekaraiah T. Modeling and computational fluid dynamic analysis on a non-AC bus coach system. Heat Transfer. 2020;1–8. https://doi.org/10.1002/htj.21857. DOI: https://doi.org/10.1002/htj.21857

S. M. Darshan and B. Suresha, “Effect of Halloysite Nanotubes on Physico-Mechanical Properties of Silk/Basalt Fabric Reinforced Epoxy Composites” in Material Science Forum, January 2021, Vol.1048, Page No. 21-32, ISSN-1662-9752. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1048.21

S. M. Darshan and B. Suresha, “Role of Silk Fibre Loading on Physico-Mechanical properties of Epoxy Composites”, in Journal of Natural fibers-Taylor and Francis, June 2021, Page No.1.13, ISSN15440478, doi:10.1080/15440478.2021.1921654. DOI: https://doi.org/10.1080/15440478.2021.1921654

Reddy, P. S., Kesavan, R., & Vijaya Ramnath, B. “Investigation of Mechanical Properties of Aluminium 6061-Silicon Carbide, Boron Carbide Metal Matrix Composite. Silicon”, 10(2), 495, 502(2017). https://doi.org/10.1007/s12633-016-9479-8. DOI: https://doi.org/10.1007/s12633-016-9479-8

Siddiqui, R. A., Abdullah, H. A., & Al-Belushi, K. R. (2000). Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. Journal of Materials Processing Technology, 102(13),234240.https://doi.org/10.1016/s0924-0136(99)00476-8. DOI: https://doi.org/10.1016/S0924-0136(99)00476-8