Tricetin and Tricin: An Overview of the Chemistry, Sources, Contents, and Pharmacological Properties of these Flavones

Jump To References Section

Authors

  • Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur. ,MY

DOI:

https://doi.org/10.18311/jnr/2024/33085

Keywords:

Hydroxylated Flavones, Methoxylated Flavones, Myricetin

Abstract

In this overview, information on the chemistry, sources, contents, and pharmacological properties of two flavones, namely, tricetin (TCT) and tricin (TC), is updated. TCT occurs mainly in honey and pollen of plant species belonging to the genus Eucalyptus of the family Myrtaceae. TC is found in monocotyledon species of the family Poaceae, occurring mainly in cereal crops such as oats, barley, rice, wheat, and corn, and in bamboo species. The chemical structure of TCT contains two hydroxyl (OH) groups at C5 and C7 of ring A and three OH groups at C3’, C4’, and C5’ of ring B, with no methoxy (OCH3) groups. TC has two OH groups at C5 and C7 of ring A, two OCH3 groups at C3’ and C5’, and one OH group at C4’ of ring B, i.e., at both sides of the C4’ OH group. This renders greater bioavailability, higher metabolic stability, and better intestinal absorption to TC than TCT. In this overview, TCT and TC have eight and seven studies on anti-cancer properties, and 14 and 31 studies on other pharmacological properties, respectively. Both flavones are equally strong in terms of cytotoxicity towards cancer cells. With greater bioavailability, higher metabolic stability, and better intestinal absorption, the other pharmacological properties of TC are stronger than TCT, but not for anti-cancer properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-02-01

How to Cite

Chan, E. W. C. (2024). Tricetin and Tricin: An Overview of the Chemistry, Sources, Contents, and Pharmacological Properties of these Flavones. Journal of Natural Remedies, 24(02), 199–211. https://doi.org/10.18311/jnr/2024/33085

Issue

Section

Review Articles
Received 2023-02-21
Accepted 2023-11-30
Published 2024-02-01

 

References

Martens S, Mithöfer A. Flavones and flavone synthases. Phytochemistry. 2005; 66(20):2399-407. https://doi. org/10.1016/j.phytochem.2005.07.013 PMid:16137727 DOI: https://doi.org/10.1016/j.phytochem.2005.07.013

Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition. 2017; 8(3):423-35. https://doi.org/10.3945/ an.116.012948 PMid:28507008 PMCid:PMC5421117 DOI: https://doi.org/10.3945/an.116.012948

Singh M, Kaur M, Silakari O. Flavones: An important scaffold for medicinal chemistry. European Journal of Medicinal Chemistry. 2014; 84:206-39. https://doi. org/10.1016/j.ejmech.2014.07.013 PMid:25019478 DOI: https://doi.org/10.1016/j.ejmech.2014.07.013

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition. 2004; 79(5):727-47. https://doi.org/10.1093/ajcn/79.5.727 PMid:15113710 DOI: https://doi.org/10.1093/ajcn/79.5.727

Wen X, Walle T. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition. 2006; 34(10):1786-92. https://doi.org/10.1124/dmd.106.011122 PMid:16868069 DOI: https://doi.org/10.1124/dmd.106.011122

Walle T. Methoxylated flavones, a superior cancer chemopreventive flavonoid sub-class? Seminars in Cancer Biology. 2007; 17(5):354-62. https://doi.org/10.1016/j.semcancer.2007.05.002 PMid:17574860 PMCid:PMC2024817 DOI: https://doi.org/10.1016/j.semcancer.2007.05.002

Walle T. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. International Journal of Molecular Sciences. 2009; 10(11):5002-19. https://doi.org/10.3390/ijms10115002 PMid:20087474 PMCid: PMC2808020 DOI: https://doi.org/10.3390/ijms10115002

Chan EWC, Ng YK, Tan CY, Alessandro L, Wong SK, Chan HT. Diosmetin and tamarixetin (methylated flavonoids): A review on their chemistry, sources, pharmacology, and anticancer properties. Journal of Applied Pharmaceutical Science. 2021; 11(3):22-8. https://doi.org/10.7324/JAPS DOI: https://doi.org/10.7324/JAPS

Chan EWC, Wong SK, Chan HT. Acacetin and chrysoeriol: A short review of the chemistry, plant sources, bioactivities and structure-activity relationships of these methylated flavones. Tropical Journal of Natural Product Research. 2022; 6(1):1-7. https://doi.org/10.26538/tjnpr/v6i1.1 DOI: https://doi.org/10.26538/tjnpr/v6i1.1

Chan EWC, Soo OY, Tan YH, Wong SK, Chan HT. Nobiletin and tangeretin (citrus polymethoxyflavones): An overview on their chemistry, pharmacology and cytotoxic activities against breast cancer. Journal of Chinese Pharmaceutical Sciences. 2020; 29:443-54. https://doi.org/10.5246/jcps.2020.07.042 DOI: https://doi.org/10.5246/jcps.2020.07.042

Cai H, Boocock DJ, Steward WP, Gescher AJ. Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties. Cancer Chemotherapy and Pharmacology. 2007; 60:257-66. https://doi.org/10.1007/s00280-006-0368-5 PMid:17089164 DOI: https://doi.org/10.1007/s00280-006-0368-5

Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry. 2002; 13(10):572-84. https://doi.org/10.1016/S0955-2863(02) 00208-5 PMid:12550068 DOI: https://doi.org/10.1016/S0955-2863(02)00208-5

Kawaii S, Ikuina T, Hikima T, Tokiwano T, Yoshizawa Y. Relationship between structure and antiproliferative activity of polymethoxyflavones towards HL60 cells. Anticancer Research. 2012; 32(12):5239-44.

Kawaii S, Ishikawa Y, Yoshizawa Y. Relationship between the structure of methoxylated and hydroxylated flavones and their antiproliferative activity in HL60 cells. Anticancer Research. 2018; 38(10):5679-84. https://doi.org/10.21873/anticanres.12904 PMid:30275187 DOI: https://doi.org/10.21873/anticanres.12904

Yao L, Jiang Y, Singanusong R, D’Arcy B, Datta N, Caffin N, et al. Flavonoids in Australian Melaleuca,Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication. Food Research International. 2004; 37(2):166-74. https://doi.org/10.1016/j.foodres.2003.11.004 DOI: https://doi.org/10.1016/j.foodres.2003.11.004

Martos I, Ferreres F, Yao L, D’Arcy B, Caffin N, Tomás- Barberán FA. Flavonoids in monospecific Eucalyptus honeys from Australia. Journal of Agricultural and Food Chemistry. 2000; 48(10):4744-8. https://doi.org/10.1021/jf000277i PMid:11052728 DOI: https://doi.org/10.1021/jf000277i

Yao L, Jiang Y, D’Arcy B, Singanusong R, Datta N, Caffin N, et al. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J ournal of Agricultural and Food Chemistry. 2004; 52(2):210-4. https://doi.org/10.1021/jf034990u PMid:14733497 DOI: https://doi.org/10.1021/jf034990u

Campos MG, Webby RF, Markham KR. The unique occurrence of the flavone aglycone tricetin in Myrtaceae pollen. Zeitschrift für Naturforschung C. 2002; 57(9-10):944-6. https://doi.org/10.1515/znc-2002-9-1031 PMid:12440738 DOI: https://doi.org/10.1515/znc-2002-9-1031

Liu L, Wang Y, Zhang J, Wang S. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis. 2021; 193. https://doi.org/10.1016/j.jpba.2020.113704 PMid:33157480 DOI: https://doi.org/10.1016/j.jpba.2020.113704

Singh B, Sahu PM, Sharma RA. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II. Cytotechnology. 2017; 69(1):103-15. https://doi.org/10.1007/s10616-016-0041-8 PMid:27905025 PMCid:PMC5264626 DOI: https://doi.org/10.1007/s10616-016-0041-8

Pistelli L, Bertoli A, Noccioli C, Mendez J, Musmanno RA, Di Maggio T, et al. Antimicrobial activity of Inga fendleriana extracts and isolated flavonoids. Natural Product Communications. 2009; 4(12):1679-83. https://doi. org/10.1177/1934578X0900401214 DOI: https://doi.org/10.1177/1934578X0900401214

Lee D, Yu JS, Huang P, Qader M, Manavalan A, Wu X, et al. Identification of anti-inflammatory compounds from Hawaiian noni (Morinda citrifolia L.) fruit juice. Molecules. 2020; 25(21):4968-79. https://doi.org/10.3390/ molecules25214968 PMid:33121016 PMCid:PMC7662328 DOI: https://doi.org/10.3390/molecules25214968

Wang N, Zhu F, Shen M, Qiu L, Tang M, Xia H, et al. Network pharmacology-based analysis on bioactive antidiabetic compounds in Potentilla discolor Bunge. Journal of Ethnopharmacology. 2019; 241. https://doi.org/10.1016/j. jep.2019.111905 PMid:31022565

Wu S, Tian L. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum). Natural Product Research. 2019; 33(2):252-7. https://doi.org/10.1080/14786419.2018.14460 09 PMid:29502447 DOI: https://doi.org/10.1080/14786419.2018.1446009

Yoshikawa M, Shimada H, Shimoda H, Murakami N, Yamahara J, Matsuda H. Bioactive constituents of Chinese natural medicines. II. Rhodiolae radix. (1). Chemical structures and antiallergic activity of rhodiocyanosides A and B from the underground part of Rhodiola guadrifida (Pall.) Fisch. et Mey. (Crassulaceae). Chemical and Pharmaceutical Bulletin. 1996; 44(11):2086-91. https://doi. org/10.1248/cpb.44.2086 PMid:8945774 DOI: https://doi.org/10.1248/cpb.44.2086

Li M, Pu Y, Yoo CG, Ragauskas AJ. The occurrence of tricin and its derivatives in plants. Green Chemistry. 2016; 18(6):1439-54. https://doi.org/10.1039/C5GC03062E DOI: https://doi.org/10.1039/C5GC03062E

Kuwabara H, Mouri K, Otsuka H, Kasai R, Yamasaki K. Tricin from a Malagasy Connaraceous plant with potent antihistaminic activity. Journal of Natural Products. 2003; 66(9):1273-5. https://doi.org/10.1021/np030020p PMid: 14510616 DOI: https://doi.org/10.1021/np030020p

Lee D, Park HY, Kim S, Park Y, Bang MH, Imm JY. Antiadipogenic effect of oat hull extract containing tricin on 3T3- L1 adipocytes. Process Biochemistry. 2015; 50(12):2314-21. https://doi.org/10.1016/j.procbio.2015.09.019 DOI: https://doi.org/10.1016/j.procbio.2015.09.019

Lan W, Rencoret J, Lu F, Karlen SD, Smith BG, Harris PJ, et al. Tricin‐lignins: Occurrence and quantitation of tricin in relation to phylogeny. Plant Journal. 2016; 88(6): 1046-57. https://doi.org/10.1111/tpj.13315 PMid:27553717 DOI: https://doi.org/10.1111/tpj.13315

Santos AL, Yamamoto ES, Passero LF, Laurenti MD, Martins LF, Lima ML, et al. Anti-leishmanial activity and immunomodulatory effects of tricin isolated from leaves of Casearia arborea (Salicaceae). Chemistry and Biodiversity. 2017; 14(5). https://doi.org/10.1002/cbdv.201600458 PMid: 28054741 DOI: https://doi.org/10.1002/cbdv.201600458

Hudson EA, Dinh PA, Kokubun T, Simmonds MS, Gescher A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology, Biomarkers and Prevention. 2000; 9(11):1163-70.

Shalini V, Pushpan CK, Sindhu G, Jayalekshmy A, Helen A. Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs. Immunobiology. 2016; 221(2):137-44. https://doi.org/10.1016/j.imbio.2015.09.016 PMid:26514297 DOI: https://doi.org/10.1016/j.imbio.2015.09.016

Jiao J, Zhang Y, Liu C, Liu JE, Wu X, Zhang Y. Separation and purification of tricin from an antioxidant product derived from bamboo leaves. Journal of Agricultural and Food Chemistry. 2007; 55(25):10086-92. https://doi.org/10.1021/ jf0716533 PMid:18001030 DOI: https://doi.org/10.1021/jf0716533

Akuzawa K, Yamada R, Li Z, Li Y, Sadanari H, Matsubara K, et al. Inhibitory effects of tricin derivative from Sasa albo-marginata on replication of human cytomegalovirus. Antiviral Research. 2011; 91(3):296-303. https://doi. org/10.1016/j.antiviral.2011.06.014 PMid:21745500 DOI: https://doi.org/10.1016/j.antiviral.2011.06.014

Yazawa K, Kurokawa M, Obuchi M, Li Y, Yamada R, Sadanari H, et al. Anti-influenza virus activity of tricin, 4’,5,7-trihydroxy-3’,5’-dimethoxyflavone. Antiviral Chemistry and Chemotherapy. 2011; 22(1):1-11. https://doi.org/10.3851/ IMP1782 PMid:21860068 DOI: https://doi.org/10.3851/IMP1782

Murayama T, Li Y, Takahashi T, Yamada R, Matsubara K, Tuchida Y, et al. Anti-cytomegalovirus effects of tricin are dependent on CXCL11. Microbes and Infection. 2012; 14(12):1086-92. https://doi.org/10.1016/j.micinf.2012.05. 017 PMid:22683667 DOI: https://doi.org/10.1016/j.micinf.2012.05.017

Akai Y, Sadanari H, Takemoto M, Uchide N, Daikoku T, Mukaida N, et al. Inhibition of human cytomegalovirus replication by tricin is associated with depressed CCL2 expression. Antiviral Research. 2017; 148:15-9. https://doi. org/10.1016/j.antiviral.2017.09.018 PMid:28965916 DOI: https://doi.org/10.1016/j.antiviral.2017.09.018

Sadanari H, Fujimoto KJ, Sugihara Y, Ishida T, Takemoto M, Daikoku T, et al. The anti‐human cytomegalovirus drug tricin inhibits cyclin‐dependent kinase 9. FEBS Open Bio. 2018; 8(4):646-54. https://doi.org/10.1002/2211- 5463.12398 PMid:29632816 PMCid:PMC5881553 DOI: https://doi.org/10.1002/2211-5463.12398

Gu JQ, Wang Y, Franzblau SG, Montenegro G, Yang D, Timmermann BN. Anti-tubercular constituents of Valeriana laxiflora. Planta Medica. 2004; 70(6):509-14. https://doi.org/10.1055/s-2004-827149 PMid:15229801 DOI: https://doi.org/10.1055/s-2004-827149

Moon JM, Park SH, Jhee KH, Yang SA. Protection against UVB-induced wrinkle formation in SKH-1 hairless mice: Efficacy of tricin isolated from enzyme-treated Zizania latifolia extract. Molecules. 2018; 23(9):2254-66. https://doi.org/10.3390/molecules PMid:19223822 PMCid: PMC6254026 DOI: https://doi.org/10.3390/molecules23092254

Lee JY, Park SH, Jhee KH, Yang SA. Zizania latifolia and its major compound tricin regulate immune responses in OVA-treated mice. Molecules. 2022; 27(13):3978-90. https://doi.org/10.3390/molecules27133978 PMid:35807220 PMCid:PMC9268014 DOI: https://doi.org/10.3390/molecules27133978

Moheb A, Grondin M, Ibrahim RK, Roy R, Sarhan F. Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent. Food Chemistry. 2013; 138(2- 3):931-7. https://doi.org/10.1016/j.foodchem.2012.09.129 PMid:23411198 DOI: https://doi.org/10.1016/j.foodchem.2012.09.129

Yue GG, Gao S, Lee JK, Chan YY, Wong EC, Zheng T, et al. A natural flavone tricin from grains can alleviate tumor growth and lung metastasis in colorectal tumor mice. Molecules. 2020; 25(16):3730-45. https://doi.org/10.3390/molecules25163730 PMid:32824166 PMCid:PMC7463810 DOI: https://doi.org/10.3390/molecules25163730

Zheng T, Wong EC, Yue GG, Li XX, Wu KH, Lau DT, et al. Identification and quantification of tricin present in medicinal herbs, plant foods and by-products using UPLC-QTOF-MS. Chemical Papers. 2021; 75(9):4579-88. https://doi.org/10.1007/s11696-021-01651-6 DOI: https://doi.org/10.1007/s11696-021-01651-6

Mohanlal S, Parvathy R, Shalini V, Helen A, Jayalekshmy A. Isolation, characterization and quantification of tricin and flavonolignans in the medicinal rice Njavara (Oryza sativa L.), as compared to staple varieties. Plant Foods for Human Nutrition. 2011; 66:91-6. https://doi.org/10.1007/s11130-011-0217-5 PMid:21373805 DOI: https://doi.org/10.1007/s11130-011-0217-5

Patel DK. Potential benefits of tricetin in medicine for the treatment of cancers and other health-related disorders: Medicinal importance and therapeutic benefit. Journal of Natural Products. 2022; 12(6):12-9. https://doi.org/10.2174 /2210315512666211221113117 DOI: https://doi.org/10.2174/2210315512666211221113117

Patel DK, Patel K. Biological potential of tricetin on diabetes disease: Pharmacological approaches in the medicine through scientific data analysis. Metabolism: Clinical and Experimental. 2022; 128. https://doi.org/10.1016/j. metabol.2021.155052 DOI: https://doi.org/10.1016/j.metabol.2021.155052

Zhou JM, Ibrahim RK. Tricin − A potential multi-functional nutraceutical. Phytochemistry Reviews. 2010; 9(3):413-24. https://doi.org/10.1007/s11101-009-9161-5 DOI: https://doi.org/10.1007/s11101-009-9161-5

Jiang B, Song J, Jin Y. A flavonoid monomer tricin in gramineous plants: Metabolism, bio/chemosynthesis, biological properties, and toxicology. Food Chemistry. 2020; 320. https://doi.org/10.1016/j.foodchem.2020.126617 PMid:32247167 DOI: https://doi.org/10.1016/j.foodchem.2020.126617

Hsu YL, Uen YH, Chen Y, Liang HL, Kuo PL. Tricetin, a dietary flavonoid, inhibits proliferation of human breast adenocarcinoma MCF-7 cells by blocking cell cycle progression and inducing apoptosis. Journal of Agricultural and Food Chemistry. 2009; 57(18):8688-95. https://doi. org/10.1021/jf901053x PMid:19705844 DOI: https://doi.org/10.1021/jf901053x

Hsu YL, Hou MF, Tsai EM, Kuo PL. Tricetin, a dietary flavonoid, induces apoptosis through the reactive oxygen species/c-Jun NH2-terminal kinase pathway in human liver cancer cells. Journal of Agricultural and Food Chemistry. 2010; 58(23):12547-56. https://doi.org/10.1021/jf103159r PMid:21067180 DOI: https://doi.org/10.1021/jf103159r

Hung JY, Chang WA, Tsai YM, Hsu YL, Chiang HH, Chou SH, et al. Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene induced human non small cell lung cancer bone metastasis. International Journal of Oncology. 2015; 46(5):1985-93. https://doi.org/10.3892/ijo.2015.2915 PMid:25738754 DOI: https://doi.org/10.3892/ijo.2015.2915

Chung TT, Chuang CY, Teng YH, Hsieh MJ, Lai JC, Chuang YT, et al. Tricetin suppresses human oral cancer cell migration by reducing matrix metalloproteinase‐9 expression through the mitogen‐activated protein kinase signalling pathway. Environmental Toxicology. 2017; 32(11):2392-9. https://doi. org/10.1002/tox.22452 PMid:28731287 DOI: https://doi.org/10.1002/tox.22452

Ho HY, Lin FC, Chen PN, Chen MK, Hsin CH, Yang SF, et al. Tricetin suppresses migration and presenilin-1 expression of nasopharyngeal carcinoma through Akt/GSK-3β pathway. American Journal of Chinese Medicine. 2020; 48(5):1203-20. https://doi.org/10.1142/S0192415X20500597 PMid:32668971 DOI: https://doi.org/10.1142/S0192415X20500597

Chao R, Chow JM, Hsieh YH, Chen CK, Lee WJ, Hsieh FK, et al. Tricetin suppresses the migration/invasion of human glioblastoma multiforme cells by inhibiting matrix metalloproteinase-2 through modulation of the expression and transcriptional activity of specificity protein 1. Expert Opinion on Therapeutic Targets. 2015; 19(10):1293-306. https://doi.org /10.1517/14728222.2015.1075509 PMid:26245494 DOI: https://doi.org/10.1517/14728222.2015.1075509

Chang PY, Hsieh MJ, Hsieh YS, Chen PN, Yang JS, Lo FC, et al. Tricetin inhibits human osteosarcoma cells metastasis by transcriptionally repressing MMP‐9 via p38 and Akt pathways. Environmental Toxicology. 2017; 32(8):2032-40. https://doi.org/10.1002/tox.22380 PMid:27860196 DOI: https://doi.org/10.1002/tox.22380

Chien MH, Chow JM, Lee WJ, Chen HY, Tan P, Wen YC, et al. Tricetin induces apoptosis of human leukemic HL-60 cells through a reactive oxygen species-mediated c-Jun N-terminal kinase activation pathway. International Journal of Molecular Sciences. 2017; 18(8):1667-81. https:// doi.org/10.3390/ijms18081667 PMid:28758971 PMCid: PMC5578057 DOI: https://doi.org/10.3390/ijms18081667

Oyama T, Yasui Y, Sugie S, Koketsu M, Watanabe K, Tanaka T. Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice. Cancer Prevention Research. 2009; 2(12):1031-8. https://doi.org/10.1158/1940- 6207.CAPR-09-0061 PMid:19934339 DOI: https://doi.org/10.1158/1940-6207.CAPR-09-0061

Cai H, Hudson EA, Mann P, Verschoyle RD, Greaves P, Manson MM, et al. Growth-inhibitory and cell cyclearresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. British Journal of Cancer. 2004; 91(7):1364- 71. https://doi.org/10.1038/sj.bjc.6602124 PMid:15316567 PMCid:PMC2410014 DOI: https://doi.org/10.1038/sj.bjc.6602124

Ghasemi S, Lorigooini Z, Wibowo J, Amini-Khoei H. Tricin isolated from Allium atroviolaceum potentiated the effect of docetaxel on PC3 cell proliferation: Role of miR-21. Natural Product Research. 2019; 33(12):1828-31. https://doi.org/10. 1080/14786419.2018.1437439 PMid:29447469 DOI: https://doi.org/10.1080/14786419.2018.1437439

Li XX, Chen SG, Yue GG, Kwok HF, Lee JK, Zheng T, et al. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. Phytomedicine. 2021; 90. https://doi. org/10.1016/j.phymed.2021.153625 PMid:34256329 DOI: https://doi.org/10.1016/j.phymed.2021.153625

Chung DJ, Wang CJ, Yeh CW, Tseng TH. Inhibition of the proliferation and invasion of C6 glioma cells by tricin via the upregulation of focal-adhesion-kinase-targeting microRNA-7. Journal of Agricultural and Food Chemistry. 2018; 66(26):6708-16. https://doi.org/10.1021/acs.jafc. 8b00604 PMid:29877083 DOI: https://doi.org/10.1021/acs.jafc.8b00604

Geraets L, Moonen HJ, Brauers K, Wouters EF, Bast A, Hageman GJ. Dietary flavones and flavonols are inhibitors of poly (ADP-ribose) polymerase-1 in pulmonary epithelial cells. Journal of Nutrition. 2007; 137(10):2190-5. https:// doi.org/10.1093/jn/137.10.2190 PMid:17884996 DOI: https://doi.org/10.1093/jn/137.10.2190

Geraets L, Haegens A, Brauers K, Haydock JA, Vernooy JH, Wouters EF, et al. Inhibition of LPS-induced pulmonary inflammation by specific flavonoids. Biochemical and Biophysical Research Communications. 2009; 382(3):598-603. https://doi.org/10.1016/j.bbrc.2009.03.071 PMid:19292976 DOI: https://doi.org/10.1016/j.bbrc.2009.03.071

Sun FF, Hu PF, Xiong Y, Bao JP, Qian J, Wu LD. Tricetin protects rat chondrocytes against IL-1β-induced inflammation and apoptosis. Oxidative Medicine and Cellular Longevity. 2019. https://doi.org/10.1155/2019/4695381 PMid:31231454 PMCid:PMC6512055 DOI: https://doi.org/10.1155/2019/4695381

Cai L, Zhang X, Hou M, Gao F. Natural flavone tricetin suppresses oxidized LDL-induced endothelial inflammation mediated by Egr-1. International Immunopharmacology. 2020; 80. https:// doi.org/10.1016/j.intimp.2020.106224 PMid:31991371 DOI: https://doi.org/10.1016/j.intimp.2020.106224

Nagy-Pénzes M, Hajnády Z, Regdon Z, Demény MÁ, Kovács K, El-Hamoly T, et al. Tricetin reduces inflammation and acinar cell injury in cerulein-induced acute pancreatitis: The role of oxidative stress-induced DNA damage signalling. Biomedicines. 2022; 10(6):1371-91. https://doi.org/10.3390/ biomedicines10061371 PMid:35740393 PMCid:PMC9219693 DOI: https://doi.org/10.3390/biomedicines10061371

Wang N, Zhu F, Shen M, Qiu L, Tang M, Xia H, et al. Network pharmacology-based analysis on bioactive antidiabetic compounds in Potentilla discolor Bunge. Journal of Ethnopharmacology. 2019; 241. https://doi.org/10.1016/j. jep.2019.111905 PMid:31022565 DOI: https://doi.org/10.1016/j.jep.2019.111905

Weseler AR, Geraets L, Moonen HJ, Manders RJ, van Loon LJ, Pennings HJ, et al. Poly (ADP-ribose) polymerase-1 inhibiting flavonoids attenuate cytokine release in blood from male patients with chronic obstructive pulmonary disease or Type 2 diabetes. Journal of Nutrition. 2009; 139(5):952-57. https://doi.org/10.3945/jn.108.102756 PMid:19321592 DOI: https://doi.org/10.3945/jn.108.102756

Tan KW, Li Y, Paxton JW, Birch NP, Scheepens A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ ABCG2). Food Chemistry. 2013; 138:2267-74. https://doi. org/10.1016/j.foodchem.2012.12.021 PMid:23497885 DOI: https://doi.org/10.1016/j.foodchem.2012.12.021

Kuppusamy A, Arumugam M, George S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. International Journal of Biological Macromolecules. 2017; 95: 199-203. https://doi.org/10.1016/j.ijbiomac.2016.11.062 PMid:27871793 DOI: https://doi.org/10.1016/j.ijbiomac.2016.11.062

Miyazaki Y, Ichimura A, Sato S, Fujii T, Oishi S, Sakai H, et al. The natural flavonoid myricetin inhibits gastric H+,K+-ATPase. European Journal of Pharmacology. 2018; 820:217-21. https://doi.org/10.1016/j.ejphar.2017.12.042 PMid:29274333 DOI: https://doi.org/10.1016/j.ejphar.2017.12.042

Ren J, Yuan L, Wang W, Zhang M, Wang Q, Li S, et al. Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson’s disease model by activating Nrf2/HO-1 signalling pathway and preventing the mitochondriadependent apoptosis pathway. Toxicology and Applied Pharmacology. 2019; 378. https://doi.org/10.1016/j. taap.2019.114617 PMid:31176653 DOI: https://doi.org/10.1016/j.taap.2019.114617

Nishina A, Ukiya M, Fukatsu M, Koketsu M, Ninomiya M, Sato D, et al. Effects of various 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 cells. Biological and Pharmaceutical Bulletin. 2015; 38(11):1794-800. https:// doi.org/10.1248/bpb.b15-00489 PMid:26521830 DOI: https://doi.org/10.1248/bpb.b15-00489

Chobot V, Hadacek F, Bachmann G, Weckwerth W, Kubicova L. In vitro evaluation of pro- and antioxidant effects of flavonoid tricetin in comparison to myricetin. Molecules. 2020; 25(24):5850-61. https://doi.org/10.3390/ molecules25245850 PMid:33322312 PMCid:PMC7768484 DOI: https://doi.org/10.3390/molecules25245850

Itoh A, Sadanari H, Takemoto M, Matsubara K, Daikoku T, Murayama T. Tricin inhibits the CCL5 induction required for efficient growth of human cytomegalovirus. Microbiology and Immunology. 2018; 62(5):341-7. https:// doi.org/10.1111/1348-0421.12590 PMid:29603339 DOI: https://doi.org/10.1111/1348-0421.12590

Kang BM, An BK, Jung WS, Jung HK, Cho JH, Cho HW, et al. Anti-inflammatory effect of tricin isolated from Alopecurus aequalis Sobol. on the LPS-induced inflammatory response in RAW 264.7 cells. International Journal of Molecular Medicine. 2016; 38(5):1614-20. https://doi.org/10.3892/ ijmm.2016.2765 PMid:28025993 DOI: https://doi.org/10.3892/ijmm.2016.2765

Lee D, Imm JY. AMP kinase activation and inhibition of nuclear factor-kappa B (NF-κB) translocation contribute to the anti-inflammatory effect of tricin. Journal of Food Biochemistry. 2017; 41(2). https://doi.org/10.1111/jfbc.12293 DOI: https://doi.org/10.1111/jfbc.12293

Tanaka T, Oyama T, Sugie S. Dietary tricin suppresses inflammation-related colon carcinogenesis in mice. Journal of Nutritional Science and Vitaminology. 2019; 65:100-3. https://doi.org/10.3177/jnsv.65.S100 PMid:31619605 DOI: https://doi.org/10.3177/jnsv.65.S100

Lee D, Go GW, Imm JY. Tricin, a methylated cereal flavone, suppresses fat accumulation by down-regulating AKT and mTOR in 3T3-L1 pre-adipocytes. Journal of Functional Foods. 2016; 26:548-56. https://doi.org/10.1016/j. jff.2016.08.023 DOI: https://doi.org/10.1016/j.jff.2016.08.023

Lee D, Imm JY. Tricin, a methylated cereal flavone suppresses fat accumulation through AKT‐mTORC1‐SREBP1 pathway in 3T3‐L1 preadipocytes. FASEB Journal. 2016; 30. https:// doi.org/10.1096/fasebj.30.1_supplement.lb281 DOI: https://doi.org/10.1096/fasebj.30.1_supplement.lb281

Lee D, Imm JY. Anti-obesity effect of tricin, a methylated cereal flavone, in high-fat-diet-induced obese mice. Journal of Agricultural and Food Chemistry. 2018; 66(38):9989-94. https://doi.org/10.1021/acs.jafc.8b03312 PMid:30173509 DOI: https://doi.org/10.1021/acs.jafc.8b03312

Cai H, Al-Fayez M, Tunstall RG, Platton S, Greaves P, Steward WP, et al. The rice bran constituent tricin potently inhibits cyclooxygenase enzymes and interferes with intestinal carcinogenesis in ApcMin mice. Molecular Cancer Therapeutics. 2005; 4(9):1287-92. https://doi. org/10.1158/1535-7163.MCT-05-0165 PMid:16170019 DOI: https://doi.org/10.1158/1535-7163.MCT-05-0165

Al-Fayez M, Cai H, Tunstall R, Steward WP, Gescher AJ. Differential modulation of cyclooxygenasemediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemotherapy and Pharmacology. 2006; 58(6):816-25. https://doi.org/10.1007/s00280-006-0228-3 PMid:16552572 DOI: https://doi.org/10.1007/s00280-006-0228-3

Seki N, Toh U, Kawaguchi K, Ninomiya M, Koketsu M, Watanabe K, et al. Tricin inhibits proliferation of human hepatic stellate cells in vitro by blocking tyrosine phosphorylation of PDGF receptor and its signalling pathways. Journal of Cellular Biochemistry. 2012; 113(7):2346-55. https:// doi.org/10.1002/jcb.24107 PMid:22359269 DOI: https://doi.org/10.1002/jcb.24107

Mu Y, Li L, Hu SQ. Molecular inhibitory mechanism of tricin on tyrosinase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 107:235-40. https:// doi.org/10.1016/j.saa.2013.01.058 PMid:23434549 DOI: https://doi.org/10.1016/j.saa.2013.01.058

Han JM, Kwon HJ, Jung HJ. Tricin, 4’,5,7-trihydroxy-3’,5’- dimethoxyflavone, exhibits potent antiangiogenic activity in vitro. International Journal of Oncology. 2016; 49(4):1497- 504. https://doi.org/10.3892/ijo.2016.3645 PMid:27498749 DOI: https://doi.org/10.3892/ijo.2016.3645

Kim S, Go GW, Imm JY. Promotion of glucose uptake in C2C12 myotubes by cereal flavone tricin and its underlying molecular mechanism. Journal of Agricultural and Food Chemistry. 2017; 65(19):3819-26. https://doi.org/10.1021/ acs.jafc.7b00578 PMid:28474889 DOI: https://doi.org/10.1021/acs.jafc.7b00578

Zhang H, Li H. Tricin enhances osteoblastogenesis through the regulation of Wnt/β-catenin signalling in human mesenchymal stem cells. Mechanisms of Development. 2018; 152:38-43. https://doi.org/10.1016/j.mod.2018.07.001 PMid:30056839 DOI: https://doi.org/10.1016/j.mod.2018.07.001

Liu Y, Qu X, Yan M, Li D, Zou R. Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway. Human and Experimental Toxicology. 2022; 41:1-10. https://doi.org/10.1177/09603271221125928 PMid:36113040 DOI: https://doi.org/10.1177/09603271221125928

Yang R, Zhao G, Yan B. Discovery of novel c-jun N-terminal kinase 1 inhibitors from natural products: Integrating artificial intelligence with structure-based virtual screening and biological evaluation. Molecules. 2022; 27(19):6249- 66 https://doi.org/10.3390/molecules PMid:19223822 PMCid:PMC6254026 DOI: https://doi.org/10.3390/molecules27196249

Yang F, Liu W. Tricin attenuates the progression of LPSinduced severe pneumonia in bronchial epithelial cells by regulating AKT and MAPK signalling pathways. Allergologia et Immunopathologia. 2022; 50(3):113-8. https://doi.org/10.15586/aei.v50i3.587 PMid:35527664 DOI: https://doi.org/10.15586/aei.v50i3.587