Role of Flavonoids in the Treatment of Urolithiasis: A Challenging Herbal Approach

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh, India ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh, India ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida - 201306, Uttar Pradesh, India ,IN

DOI:

https://doi.org/10.18311/jnr/2023/33996

Keywords:

Flavonoid-Rich Plants, Pathophysiology, Risk Factors, Synthetic Treatment, Urolithiasis

Abstract

A common condition that puts a huge financial and morbidity burden is kidney stones. Throughout the past 20 years, the frequency of urolithiasis has increased; 5 to 15 % of people globally are affected. Calcium oxalate (CaOx) kidney stones, which form in the renal surfaces, are the most prevalent variety. Several physicochemical processes of urinary stone constituents within tubular cells lead to the complex process of stone generation. Obese people are known to be at an increased risk of developing stones. Nephrolithiasis in women is becoming more common because of metabolic syndrome. Recent years have seen a significant change in the detection and initial treatment of urolithiasis. Calcium oxalate renal stones are the most typical type of stone proclaimed in India. Since medicinal herbs are safer, more efficient, more acceptable culturally, and have fewer side effects than produced pharmaceuticals, they have been used for treatment for millennia. Patients are recommended to follow a low-fat diet and take herbal remedies in addition to fibre from naturally occurring plants. Flavonoids are a type of plant polyphenol that has been linked to several health benefits. Recent research has revealed that plant flavonoids can significantly reduce the formation of kidney stones in vitro and in vivo, which correlates with their anti-inflammatory, antioxidant, diuretic, antibacterial, and other beneficial actions. Thus, the flavonoids or extracts of flavonoid-rich plants associated with anti-urolithiasis activity were evaluated. This article emphasises the use of flavonoid-containing plants or herbs and synthetic medications to cure kidney stones. The epidemiology, mechanism of action, pathophysiology, synthetic and natural treatments for kidney stone development, and ways to reduce stone risks are all covered in this review article.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-02

How to Cite

Neha, Mazumder, A., Das, S., & Chandel, S. (2023). Role of Flavonoids in the Treatment of Urolithiasis: A Challenging Herbal Approach. Journal of Natural Remedies, 23(4), 1237–1254. https://doi.org/10.18311/jnr/2023/33996

Issue

Section

Review Articles
Received 2023-06-06
Accepted 2023-07-25
Published 2023-11-02

 

References

Cook J, Lamb BW, Lettin JE, Graham SJ. The epidemiology of urolithiasis in an ethnically diverse population living in the same area. Urol J. 2016; 13(4):2754-8. PMID 27576881

Mittal A, Tandon S, Singla SK, Tandon C. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna. Urolithiasis. 2016; 44(2):117-25. https://doi.org/10.1007/s00240-015-0822-0 PMid:26424092 DOI: https://doi.org/10.1007/s00240-015-0822-0

Bashir S, Gilani AH, Siddiqui AA, Pervez S, Khan SR, Sarfaraz NJ et al. Berberis vulgaris root bark extract prevents hyperoxaluria-induced urolithiasis in rats. Phytother Res. 2010; 24(8):1250-5. https://doi.org/10.1002/ptr.3196 PMid:20564494 DOI: https://doi.org/10.1002/ptr.3196

Yadav RD, Jain SK, Alok S, Amita V, Mahor A, et al. Herbal plants used in the treatment of urolithiasis: A review. Int J Pharm Sci Res. 2011; 2(6):1412-20.

Evan AP. Physiopathology and aetiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol. 2010; 25(5):831-41. https://doi.org/10.1007/s00467-009-1116-y PMid:19198886 PMCid:PMC2839518 DOI: https://doi.org/10.1007/s00467-009-1116-y

Robertson WG. The scientific basis of urinary stone formation. In: Mundy AR, Fitzpatrick JM, Neal DE, George NJR, editors. The scientific basis of urology. 3rd ed. United Kingdom: T and F Informa UK Limited; 2010. pp. 162-81. https://doi.org/10.3109/9781841847498-11 DOI: https://doi.org/10.3109/9781841847498-11

Randall A. The origin and growth of renal calculi. Ann Surg. 1937; 105(6):1009-27. https://doi.org/10.1097/00000658193706000-00014 PMid:17856988 PMCid:PMC1390483 DOI: https://doi.org/10.1097/00000658-193706000-00014

Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007; 290(10):1315-23. https://doi.org/10.1002/ar.20580 PMid:17724713

Knoll T. Epidemiology, pathogenesis, and pathophysiology of urolithiasis. Eur Urol Suppl. 2010; 9(12):802-06. https://doi.org/10.1016/j.eursup.2010.11.006 DOI: https://doi.org/10.1016/j.eursup.2010.11.006

Matlaga BR, Coe FL, Evan AP, Lingeman JE. The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol. 2007; 177(1):31-8. https://doi.org/10.1016/j.juro.2006.08.088 PMid:17161996 DOI: https://doi.org/10.1016/j.juro.2006.08.088

Green W, Ratan H. Molecular mechanisms of urolithiasis. Urology. 2013; 81(4):701-04. https://doi.org/10.1016/j.urology.2012.12.039 PMid:23434095 DOI: https://doi.org/10.1016/j.urology.2012.12.039

Carr RJ. A new theory on the formation of renal calculi. Br J Urol. 1954; 26(2):105-17. https://doi.org/10.1111/j.1464410X.1954.tb06073.x PMid:13172454 DOI: https://doi.org/10.1111/j.1464-410X.1954.tb06073.x

King JS Jr. Currents in renal stone research. Clin Chem. 1971; 17(10):971-82. https://doi.org/10.1093/clinchem/17.10.971 PMid:4942131 DOI: https://doi.org/10.1093/clinchem/17.10.971

Borghi L, Meschi T, Maggiore U, Prati B. Dietary therapy in idiopathic nephrolithiasis. Nutr Rev. 2006; 64(7 Pt 1):301-12. https://doi.org/10.1301/nr.2006.jul.301-312 PMid:16910218 DOI: https://doi.org/10.1111/j.1753-4887.2006.tb00214.x

Asplin JR, Coe FL. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J Urol. 2007; 177(2):565-9. https://doi.org/10.1016/j.juro.2006.09.033 PMid:17222634 DOI: https://doi.org/10.1016/j.juro.2006.09.033

Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008; 73(4):489-96. https://doi.org/10.1038/sj.ki.5002708PMid:18059457 DOI: https://doi.org/10.1038/sj.ki.5002708

Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv Urol. 2018; 2018:3068365. https://doi.org/10.1155/2018/3068365 PMid:29515627 PMCid: PMC5817324 DOI: https://doi.org/10.1155/2018/3068365

Available from: https://www.mayoclinic.org/diseasesconditions/kidney-stones/symptoms-causes/syc-20355755.

Su CJ, Shevock PN, Khan SR, Hackett RL. Effect of magnesium on calcium oxalate urolithiasis. J Urol. 1991; 145(5):1092-5. https://doi.org/10.1016/S0022-5347(17)38541-5 PMid:2016799 DOI: https://doi.org/10.1016/S0022-5347(17)38541-5

Ettinger B, Citron JT, Livermore B, Dolman LI. Chlorthalidone reduces calcium oxalate calculous

recurrence, but magnesium hydroxide does not. J Urol. 1988; 139(4):679-84. https://doi.org/10.1016/S0022-5347(17)42599-7 PMid:3280829 DOI: https://doi.org/10.1016/S0022-5347(17)42599-7

Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007; 290(10):1315-23. https://doi.org/10.1002/ar.20580 PMid:17724713 DOI: https://doi.org/10.1002/ar.20580

Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003; 111(5):607-16. https://doi.org/10.1172/JCI17038 PMid:12618515 PMCid:PMC151900 DOI: https://doi.org/10.1172/JCI17038

Shadman A, Bastani B. Kidney calculi: pathophysiology and as a systemic disorder. Iran J Kidney Dis. 2017; 11(3):18091. PMID 28575878

Alok S, Jain SK, Verma A, Kumar M, Sabharwal M. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: a review. Asian Pac J Trop Dis. 2013; 3(6):496-504. https://doi.org/10.1016/S2222-1808(13)60107-3 DOI: https://doi.org/10.1016/S2222-1808(13)60107-3

Havagiray R, Shashi A, Jain SK, Sabharwal M. Herbal treatment for urinary stones. Int J Pharm Sci Res. 2010; 1:24-9.

Seitz C, Liatsikos E, Porpiglia F, Tiselius HG, Zwergel U. Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol. 2009; 56(3):455-71. https://doi.org/10.1016/j.eururo.2009.06.012 PMid:19560860 DOI: https://doi.org/10.1016/j.eururo.2009.06.012

Kaplon DM, Sterrett S, Nakada SY. Medical management of acute urolithiasis in one American academic emergency room. BJU Int. 2010; 105(6):856-8. https://doi.org/10.1111/j.1464-410X.2009.08922.x PMid:19912197 DOI: https://doi.org/10.1111/j.1464-410X.2009.08922.x

Singh A, Alter HJ, Littlepage A. A systematic review of medical therapy to facilitate passage of ureteral calculi. Ann Emerg Med. 2007; 50(5):552-63. https://doi.org/10.1016/j.annemergmed.2007.05.015 PMid:17681643 DOI: https://doi.org/10.1016/j.annemergmed.2007.05.015

Michel MC, de la Rosette JJMCH. α-blocker treatment of urolithiasis. Eur Urol. 2006; 50(2):213-4. https://doi.org/10.1016/j.eururo.2006.02.047PMid:16545903 DOI: https://doi.org/10.1016/j.eururo.2006.02.047

Hollingsworth JM, Rogers MAM, Kaufman SR, Bradford TJ, Saint S, Wei JT, et al. Medical therapy to facilitate urinary stone passage: a meta-analysis. Lancet. 2006; 368(9542):11719. https://doi.org/10.1016/S0140-6736(06)69474-9 PMid: 17011944 DOI: https://doi.org/10.1016/S0140-6736(06)69474-9

Romics I. The role of alpha-adrenoreceptors in the treatment of urological diseases. Neurochem Int. 2007; 51(5):328-31. https://doi.org/10.1016/j.neuint.2007.05.023 PMid:17688972 DOI: https://doi.org/10.1016/j.neuint.2007.05.023

Bandi G, Nakada SY, Penniston KL. A practical approach to metabolic evaluation and treatment of the recurrent stone patient. Wis Med J. 2008; 107(2):91-100. PMID 18593084 33. Sayer JA, Moochhala SH, Thomas DJ. The medical management of urolithiasis. Br J Med Surg Urol. 2010; 3(3):87-95. https://doi.org/10.1016/j.bjmsu.2010.02.004 DOI: https://doi.org/10.1016/j.bjmsu.2010.02.004

Reynolds TM. ACP Best Practice No 181: Chemical pathology clinical investigation and management of nephrolithiasis. J Clin Pathol. 2005; 58(2):134-40. https://doi.org/10.1136/jcp.2004.019588 PMid:15677531 PMCid: PMC1770577 DOI: https://doi.org/10.1136/jcp.2004.019588

Elkoushy MA, Violette PD, Andonian S. Percutaneous installation of chemolytic, chemotherapeutic, and antifungal agents. In: Smith AD, Badlani G, Preminger GM, Kavoussi LR, editors. Smith’s textbook of endourology. 3rd ed. Hoboken: Blackwell Publishing Ltd; 2012. p. 290309. March-April 2017 Indian Journal of Pharmaceutical Sciences 173. https://doi.org/10.1002/9781444345148.ch26 DOI: https://doi.org/10.1002/9781444345148.ch26

Heilberg IP, Schor N. Renal stone disease: causes, evaluation and medical treatment. Arq Bras Endocrinol Metab. 2006; 50(4):823-31. https://doi.org/10.1590/S000427302006000400027 PMid:17117307

Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006; 367(9507):333-44. https://doi.org/10.1016/S0140-6736(06)68071-9 PMid:16443041 DOI: https://doi.org/10.1016/S0140-6736(06)68071-9

Moran ME, Abrahams HM, Burday DE, Greene TD. Utility of oral dissolution therapy in the management of referred patients with secondarily treated uric acid stones. Urology. 2002; 59(2):206-10. https://doi.org/10.1016/S00904295(01)01499-6 PMid:11834386 DOI: https://doi.org/10.1016/S0090-4295(01)01499-6

Semins MJ, Matlaga BR. Medical evaluation and management of urolithiasis. Ther Adv Urol. 2010; 2(1):3-9. https://doi.org/10.1177/1756287210369121 PMid:21789078 PMCid:PMC3126068 DOI: https://doi.org/10.1177/1756287210369121

Atmani F. Medical management of urolithiasis, what opportunity for phytotherapy? Front Biosci. 2003; 8(6):s507514. https://doi.org/10.2741/1081 PMid:12700097 DOI: https://doi.org/10.2741/1081

Grosser T, Smyth E, FitzGerald GA. Antiinflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. In: Brunton LL, Chabner BA, Knollman BC, editors. Goodman and Gilman are the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 959-1004.

Heilberg IP, Schor N. Renal stone disease: causes, evaluation, and medical treatment. Arq Bras Endocrinol Metab. 2006; 50(4):823-31. https://doi.org/10.1590/S0004-27302006000400027 PMid:17117307 DOI: https://doi.org/10.1590/S0004-27302006000400027

Singh SK, Agarwal MM, Sharma S. Medical therapy for calculus disease. BJU Int. 2011; 107(3):356-68. https://doi.org/10.1111/j.1464-410X.2010.09802.x PMid:21244607 DOI: https://doi.org/10.1111/j.1464-410X.2010.09802.x

Saklayen MG. Medical management of nephrolithiasis. Med Clin North Am. 1997; 81(3):785-99. https://doi.org/10.1016/S0025-7125(05)70546-0 PMid:9167658 DOI: https://doi.org/10.1016/S0025-7125(05)70546-0

Bihl G, Meyers A. Recurrent renal stone disease- advances in pathogenesis and clinical management. Lancet. 2001; 358(9282):651-56. https://doi.org/10.1016/S0140-6736(01)05782-8 PMid:11530173 DOI: https://doi.org/10.1016/S0140-6736(01)05782-8

Micali S, Grande M, Sighinolfi MC, De Carne C, De Stefani S, Bianchi G. Medical therapy of urolithiasis. J Endourol. 2006; 20(11):841-7. https://doi.org/10.1089/end.2006.20.841 PMid:17144848 DOI: https://doi.org/10.1089/end.2006.20.841

Available from: http://www.ncbi.nlm.nih.gov/books/ NBK278956/

Available from: http://www.imop.gr/en/uroinfourolithiasis% 23#antimetopisi 49. Havagiray R, Shashi A, Jain SK, Sabharwal M. Herbal treatment for urinary stones. Int J Pharm Sci Res. 2010; 1:24-9.

Brancalion AP, Oliveira RB, Sousa JP, Groppo M, Berretta AA, Barros ME, et al. Effect of hydroalcoholic extract from Copaifera langsdorffii leaves on urolithiasis induced in rats. Urol Res. 2012; 40(5):475-81. https://doi.org/10.1007/s00240-011-0453-z PMid:22237410 DOI: https://doi.org/10.1007/s00240-011-0453-z

Khalili M, Jalali MR, Mirzaei-Azandaryani M. Effect of hydroalcoholic extract of Hypericum perforatum L. leaves on ethylene glycol-induced kidney calculi in rats. Urol J. 2012; 9(2):472-9. PMID 22641490

Khan AU, Gilani AH, Najeeb-ur-Rehman. Pharmacological studies on Hypericum perforatum fractions and constituents. Pharm Biol. 2011; 49(1):46-56. https://doi.org/10.3109/138 80209.2010.494307 PMid:20738215 DOI: https://doi.org/10.3109/13880209.2010.494307

Lin WC, Lai MT, Chen HY, Ho CY, Man KM, Shen JL, et al. Protective effect of Flos carthami extract against ethylene glycol-induced urolithiasis in rats. Urol Res. 2012; 40(6):655-61. https://doi.org/10.1007/s00240-012-0472-4 PMid:22398437 DOI: https://doi.org/10.1007/s00240-012-0472-4

Bayir Y, Halici Z, Keles MS, Colak S, Cakir A, Kaya Y, et al. Helichrysum plicatum DC. Subsp. plicatum, extract as a preventive agent in experimentally induced urolithiasis model. J Ethnopharmacol. 2011; 138(2):408-14. https://doi.org/10.1016/j.jep.2011.09.026 PMid:21963562 DOI: https://doi.org/10.1016/j.jep.2011.09.026

Hosseinzadeh H, Khooei AR, Khashayarmanesh Z, Motamed-Shariaty V. Antiurolithiatic activity of Pinus eldarica medw: fruits aqueous extract in rats. Urol J. 2010; 7(4):232-7. PMID 21170851

Rathod NR, Biswas D, Chitme HR, Ratna S, Muchandi IS, Chandra R. Anti-urolithiasis effects of Punica granatum in male rats. J Ethnopharmacol. 2012; 140(2):234-8. https://doi.org/10.1016/j.jep.2012.01.003 PMid:22285521 DOI: https://doi.org/10.1016/j.jep.2012.01.003

Ilbey YO, Ozbek E, Simsek A, Cekmen M, Somay A, Tasci AI. Effects of pomegranate juice on hyperoxaluriainduced oxidative stress in the rat kidneys. Ren Fail. 2009; 31(6):522-31. https://doi.org/10.1080/08860220902963871 PMid:19839830 DOI: https://doi.org/10.1080/08860220902963871

Tracy CR, Henning JR, Newton MR, Aviram M, Bridget Zimmerman M. Oxidative stress and nephrolithiasis: a comparative pilot study evaluating the effect of pomegranate extract on stone risk factors and elevated oxidative stress levels of recurrent stone formers and controls. Urolithiasis. 2014; 42(5):401-8. https://doi.org/10.1007/s00240-0140686-8 PMid:25085198 DOI: https://doi.org/10.1007/s00240-014-0686-8

Tugcu V, Kemahli E, Ozbek E, Arinci YV, Uhri M, Erturkuner P, et al. Protective effect of a potent antioxidant, pomegranate juice, in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Endourol. 2008; 22(12):272331. https://doi.org/10.1089/end.2008.0357 PMid:19025399 DOI: https://doi.org/10.1089/end.2008.0357

Xiang S, Zhou J, Li J, Wang Q, Zhang Q, Zhao Z, et al. Antilithic effects of extracts from different polarity fractions of Desmodium styracifolium on experimentally induced urolithiasis in rats. Urolithiasis. 2015; 43(5):433-9. https://doi.org/10.1007/s00240-015-0795-z PMid:26123751 DOI: https://doi.org/10.1007/s00240-015-0795-z

Zhou J, Jin J, Li X, et al. Total flavonoids of Desmodium styracifolium attenuate the formation of hydroxy-l-prolineinduced calcium oxalate urolithiasis in rats. Urolithiasis. 2017:1-11. https://doi.org/10.1007/s00240-017-0985-y PMid:28567512 DOI: https://doi.org/10.1007/s00240-017-0985-y

Zhang H, Li N, Li K, Li P. Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats. Mol Med Rep. 2014; 10(6):3157-62. https://doi.org/10.3892/mmr.2014.2610 PMid:25310585 DOI: https://doi.org/10.3892/mmr.2014.2610

Purushotham K. Evaluation of in vitro anti urolithiasis activity of Clerodendrum inerme. World J Gastroenterol Hepatol Endosc. 2019; 1(1):1-4.

El-Shamy AM, El-Shabrawy ARO, El-Fiki N. Phytochemical study of Clerodendron inerme L. Growing in Egypt, Zagazig. J Pharm Sci. 1996; 5:49-53. https://doi.org/10.21608/ zjps.1996.185015 DOI: https://doi.org/10.21608/zjps.1996.185015

Kumari CS. Logeshwari B. In silico and In vitro evaluation of anti-urolithiasis activity of ethanolic extract of Hybanthus enneaspermus (Linn.) F. Muell. International Journal of Pharmaceutical Research and Applications Volume 6(2, March-April) 2021, pp 548-60.

Zeng Xiangquan, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: a review. Crit Rev Food Sci Nutr. 2019; 59(13):2125-35. https://doi.org/10.1080/10408398.2018.14 39880 PMid:29432040 DOI: https://doi.org/10.1080/10408398.2018.1439880

Ghodasara J, Pawar A, Deshmukh C, et al. Inhibitory effect of rutin and curcumin on experimentally induced calcium oxalate urolithiasis in rats. Pharm Res. 2011; 2(6):388-92. https://doi.org/10.4103/09748490.75462 PMid:21713144 PMCid:PMC3111700

Zhai W, Zheng J, Yao X, Peng B, Liu M, Huang J, et al. Catechin prevents the calcium oxalate monohydrateinduced renal calcium crystallization in NRK-52E cells and the ethylene glycol-induced renal stone formation in rats. BMC Complement Altern Med. 2013; 13(1):228.

https://doi.org/10.1186/1472-688213-228 PMid:24044655 PMCid:PMC3849621

Grases F, Prieto RI, Sanchis P, et al. Phytotherapy and renal stones: the role of antioxidants: A pilot study in Wistar rats. Urolithiasis. 2009; 37(1):35-40. https://doi.org/10.1007/ s00240-008-0165-1 PMid:19066877 DOI: https://doi.org/10.1007/s00240-008-0165-1

Prabhu VV, Sathyamurthy D, Ramasamy A, Das S, Anuradha M, Pachiappan S. Evaluation of protective effects of diosmin (a citrus flavonoid) in chemical-induced urolithiasis in experimental rats. Pharm Biol. 2016; 54(9):1513-21. https://doi.org/10.3109/13880209.2015.1107105 PMid:26799954 DOI: https://doi.org/10.3109/13880209.2015.1107105

Yasir F, MI. Attia-tull-Wahab, Choudhary, Protective effect of dietary polyphenol caffeic acid on ethylene glycol-induced kidney stones in rats. Urolithiasis. 2017; 45:1-2. https://doi.org/10.1007/s00240-017-0982-1 PMid:28616648 DOI: https://doi.org/10.1007/s00240-017-0982-1

Zhai W, Zheng J, Yao X, Peng B, Liu M, Huang J et al. Catechin prevents the calcium oxalate monohydrateinduced renal calcium crystallization in NRK-52E cells and the ethylene glycol-induced renal stone formation in rats. BMC Complement Altern Med. 2013; 13(1):228. https://doi.org/10.1186/1472-6882-13-228 PMid:24044655 PMCid:PMC3849621 DOI: https://doi.org/10.1186/1472-6882-13-228

Ghodasara J, Pawar A, Deshmukh C, Kuchekar B. Inhibitory effect of rutin and curcumin on experimentally induced calcium oxalate urolithiasis in rats. Pharmacogn Res. 2010; 2(6):388-92. https://doi.org/10.4103/0974-8490.75462 PMid: 21713144 PMCid:PMC3111700 DOI: https://doi.org/10.4103/0974-8490.75462

Noorafshan A, Karbalay-Doust S, Karimi F. Diosmin reduces calcium oxalate deposition and tissue degeneration in nephrolithiasis in rats: a stereological study. Korean J Urol. 2013; 54(4):252-7. https://doi.org/10.4111/kju.2013.54.4.252 PMid:23614063 PMCid:PMC3630345 DOI: https://doi.org/10.4111/kju.2013.54.4.252

Zhu W, Xu YF, Feng Y, Peng B, Che JP, Liu M et al. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone-forming rat model. Urolithiasis.2014; 42(6):519-26. https://doi.org/10.1007/s00240-0140695-7 PMid:25085199 DOI: https://doi.org/10.1007/s00240-014-0695-7

Dinnimath BM, Jalalpure SS, Patil UK. Antiurolithiatic activity of natural constituents isolated from Aerva lanata. J Ayurveda Integr Med. 2017; 8(4):226-32. https://doi.org/10.1016/j.jaim.2016.11.006 PMid:29169771 PMCid:PMC5747499 DOI: https://doi.org/10.1016/j.jaim.2016.11.006

Hong SH, Lee HJ, Sohn EJ, Ko HS, Shim BS, Ahn KS et al. Antinephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol Rep. 2013; 65(4):970-9. https://doi.org/10.1016/S1734-1140(13)71078-8 PMid:24145091 DOI: https://doi.org/10.1016/S1734-1140(13)71078-8

Ahmed S, Hasan MM, Mahmood ZA. Antiurolithiatic plants: multidimensional pharmacology. J Pharmacogn Phytochem. 2016; 5(2):4-24.

Grases F, Prieto RM, Fernandez-Cabot RA, CostaBauzá A, Tur F, Torres JJ. Effects of polyphenols from grape seeds on renal lithiasis. Oxid Med Cell Longev. 2015; 2015:813737. https://doi.org/10.1155/2015/813737 PMid:25883748 PMCid:PMC4389982 DOI: https://doi.org/10.1155/2015/813737

Golshan A, Hayatdavoudi P, Hadjzadeh MALR, Khajavi Rad A, Mohamadian Roshan N, Abbasnezhad A et al. Kidney stone formation and antioxidant effects of Cynodon dactylon decoction in male Wistar rats. Avicenna J Phytomed. 2017; 7(2):180-90. PMID 28348973.

Holoch PA, Tracy CR. Antioxidants and self-reported history of kidney stones: the national health and nutrition examination survey. J Endourol. 2011; 25(12):1903-8. https://doi.org/10.1089/end.2011.0130 PMid:21864023 DOI: https://doi.org/10.1089/end.2011.0130

Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors, Pharmacol.

Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; 2016:5276130. https://doi.org/10.1155/2016/5276130 PMid: 27803762 PMCid:PMC5075620 DOI: https://doi.org/10.1155/2016/5276130

Lee JH, Zhou HY, Cho SY, Kim YS, Lee YS, Jeong CS. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch Pharm Res. 2007; 30(10):1318-27. https://doi.org/10.1007/BF02980273 PMid: 18038911 DOI: https://doi.org/10.1007/BF02980273

Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009; 14(2):141-53.

He YH, Xiao C, Wang YS, Zhao LH, Zhao HY, Tong Y, et al. Antioxidant and anti-inflammatory effects of cyanidin from cherries on rat adjuvant-induced arthritis. Zhongguo Zhong Yao Za Zhi. 2005; 30(20):1602-5. PMID 16422543

Zhu H, Liang Q-H, Xiong X-G, Chen J, Wu D, Wang Y, et al. Anti-inflammatory effects of the bioactive compound ferulic acid contained in Oldenlandia diffusa on collageninduced arthritis in rats. Evid Based Complement Alternat Med. 2014; 2014:10. https://doi.org/10.1155/2014/573801 PMid:24883069 PMCid:PMC4026839 DOI: https://doi.org/10.1155/2014/573801

BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M.

Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A and B isolated from Punica granatum. BMC Complement Altern Med. 2017; 17(1):47. https://doi.org/10.1186/s12906-017-1555-0 PMid:28088220 PMCid: PMC5237561 DOI: https://doi.org/10.1186/s12906-017-1555-0

Hidalgo M, Martin-Santamaria S, Recio I, Sanchez-Moreno C, B. de Pascual, Jeon IH, Kim HS, Kang HJ, Lee HS, Jeong SI, Kim SJ, et al. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules. 2014; 19(6):6941-51. https://doi.org/10.3390/molecules19066941 PMid:24871572 PMCid:PMC6271665 DOI: https://doi.org/10.3390/molecules19066941

Huang WY, Wang J, Liu YM, Zheng QS, Li CY. Inhibitory effect of malvidin on TNF-α-induced inflammatory response in endothelial cells. Eur J Pharmacol. 2014; 723:67-72. https://doi.org/10.1016/j.ejphar.2013.11.041 PMid:24333549 DOI: https://doi.org/10.1016/j.ejphar.2013.11.041

Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, et al. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J Agric Food Chem. 2008; 56(21):10265-72. https://doi.org/10.1021/jf802095g PMid:18841975 DOI: https://doi.org/10.1021/jf802095g

Ham JR, Lee HI, Choi RY, Sim MO, Seo KI, Lee MK. Antisteatotic and anti-inflammatory roles of syringic acid in highfat diet-induced obese mice. Food Funct. 2016; 7(2):689-97. https://doi.org/10.1039/C5FO01329A PMid:26838182 DOI: https://doi.org/10.1039/C5FO01329A

Joshi S, Peck AB, Khan SR. NADPH oxidase as a therapeutic target for oxalate-induced injury in kidneys. Oxid Med Cell Longev. 2013; 2013:18. https://doi.org/10.1155/2013/462361 PMid:23840917 PMCid:PMC3690252 DOI: https://doi.org/10.1155/2013/462361

Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, et al. Inhibition of Angiotensin-Converting Enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res. 2007; 21(1):32-6. https://doi.org/10.1002/ptr.2008 PMid:17072829 DOI: https://doi.org/10.1002/ptr.2008

Bhullar KS, Lassalle-Claux G, Touaibia M, Rupasinghe HP. The antihypertensive effect of caffeic acid and its analogues through dual renin–angiotensin–aldosterone system inhibition. Eur J Pharmacol. 2014; 730:125-32. https://doi.org/10.1016/j.ejphar.2014.02.038 PMid:24631256 DOI: https://doi.org/10.1016/j.ejphar.2014.02.038

He J. Bioactivity-guided fractionation of Pine needles reveals catechin as an antihypertension agent via inhibiting angiotensin-converting enzyme. Sci Rep. 2017; 7(1):8867. https://doi.org/10.1038/s41598-01707748-x PMid: 28827527 PMCid:PMC5567173 DOI: https://doi.org/10.1038/s41598-017-07748-x

Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of AngiotensinConverting Enzyme (ACE) activity by the anthocyanins delphinidin-and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa.

Choudhury A, Pai KV. Angiotensin-converting enzyme inhibition activity of daidzein. J Drug Deliv Ther. 2014; 4(6):92-8. https://doi.org/10.22270/jddt.v4i6.994 DOI: https://doi.org/10.22270/jddt.v4i6.994

Montenegro MF, Pessa LR, Tanus-Santos JE. Isoflavone genistein inhibits the angiotensin-converting enzyme and alters the vascular responses to angiotensin I and bradykinin. Eur J Pharmacol. 2009; 607(1):173-7. https://doi.org/10.1016/j.ejphar.2009.02.015 PMid:19233159 DOI: https://doi.org/10.1016/j.ejphar.2009.02.015

Quinn L, Gray SG, Meaney S, Finn S, McLoughlin P, Hayes M. Extraction and quantification of sinapinic acid from Irish rapeseed meal and assessment of AngiotensinI Converting Enzyme (ACE-I) inhibitory activity. J Agric Food Chem. 2017; 65(32):6886-92. https://doi.org/10.1021/acs.jafc.7b02670 PMid:28748695 DOI: https://doi.org/10.1021/acs.jafc.7b02670

Jiménez-Ferrer E, Alarcón-Alonso J, Aguilar-Rojas A, Zamilpa A, Jiménez-Ferrer C I, Tortoriello J, et al. The diuretic effect of compounds from Hibiscus sabdariffa by modulation of the aldosterone activity. Planta Med. 2012; 78(18):1893-8. https://doi.org/10.1055/s-0032-1327864 PMid:23150077 DOI: https://doi.org/10.1055/s-0032-1327864

Kateel R, Rai MS, Kumar AK. Evaluation of the diuretic activity of gallic acid in normal rats. J Sci Innov Res. 2014; 3(2):217-20. https://doi.org/10.31254/jsir.2014.3216 DOI: https://doi.org/10.31254/jsir.2014.3216

Giménez I, Martinez RM, Lou M, Mayoral JA, Garay RP, Alda JO. Salidiuretic action by genistein in the isolated, perfused rat kidney. Hypertension. 1998; 31(2):706-11. https://doi.org/10.1161/01.HYP.31.2.706 PMid:9461244 DOI: https://doi.org/10.1161/01.HYP.31.2.706

Boeing T, da Silva LM, Mariott M, de Andrade SF, de Souza P. Diuretic and natriuretic effect of luteolin in normotensive and hypertensive rats: role of muscarinic acetylcholine receptors. Pharmacol Rep. 2017; 69(6):1121-4. https://doi.org/10.1016/j.pharep.2017.05.010 PMid:29128789 DOI: https://doi.org/10.1016/j.pharep.2017.05.010

Uesugi S. Comparative research on diuretic actions of some flavone compounds. Folia Pharmacol Jpn. 1954; 50(6):502-522. https://doi.org/10.1254/fpj.50.6_502 DOI: https://doi.org/10.1254/fpj.50.6_502

Chang H, Lei L, Zhou Y, Ye F, Zhao G. Dietary flavonoids, and the risk of colorectal cancer: an updated meta-analysis of epidemiological studies. Nutrients. 2018; 10(7):95063. https://doi.org/10.3390/nu10070950 PMid:30041489 PMCid:PMC6073812 DOI: https://doi.org/10.3390/nu10070950

Nimptsch K, Zhang X, Cassidy A, Song M, O’Reilly ÉJ, Lin JH et al. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. Am J Clin Nutr. 2016; 103(1):184-91. https://doi.org/10.3945/ ajcn.115.117507 PMid:26537935 PMCid:PMC4691672 DOI: https://doi.org/10.3945/ajcn.115.117507

Feng XL, Ho SC, Mo XF, Lin FY, Zhang NQ, Luo H et al. Association between flavonoids, flavonoid subclasses intake and breast cancer risk: A case-control study in China. Eur J Cancer Prev. 2020; 29(6):493-500. https://doi.org/10.1097/CEJ.0000000000000561 PMid:31738218 DOI: https://doi.org/10.1097/CEJ.0000000000000561

Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioğlu E, Dortbudak MB. Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: A multi-biomarker approach. Food Chem Toxicol. 2020; 138:111190. https://doi.org/10.1016/j.fct.2020.111190 PMid:32068001 DOI: https://doi.org/10.1016/j.fct.2020.111190

Levin J, Maaß S, Schuberth M, Giese A, Oertel WH, Poewe W, et al. Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2019; 18(8):724-35. https://doi.org/10.1016/S14744422(19)30141-3 PMid:31278067 DOI: https://doi.org/10.1016/S1474-4422(19)30141-3

Levin J, Maaß S, Schuberth M, Respondek G, Paul F, Mansmann U, et al. The PROMESA-protocol: progression rate of multiple system atrophy under EGCG supplementation as an anti-aggregation approach. J Neural Transm (Vienna). 2016; 123(4):439-45. https://doi.org/10.1007/s00702-0161507-8 PMid:26809243 DOI: https://doi.org/10.1007/s00702-016-1507-8

Papackova Z, Heczkova M, Dankova H, Sticova E, Lodererova A, Bartonova L, et al. Silymarin prevents acetaminophen-induced hepatotoxicity in mice. PLOS ONE. 2018; 13(1):e0191353. https://doi.org/10.1371/journal.pone.0191353 PMid:29342206 PMCid:PMC5771617 DOI: https://doi.org/10.1371/journal.pone.0191353

James KD, Forester SC, Lambert JD. Dietary pretreatment with green tea polyphenol, (-)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent bolus doses of (-)-epigallocatechin-3- gallate. Food Chem Toxicol. 2015; 76:103-8. https://doi.org/10.1016/j.fct.2014.12.009 PMid:25528115 PMCid:PMC4383035 DOI: https://doi.org/10.1016/j.fct.2014.12.009

Lambert JD, Kennett MJ, Sang S, Reuhl KR, Ju J, Yang CS. Hepatotoxicity of high oral dose (-)-epigallocatechin-3gallate in mice. Food Chem Toxicol. 2010; 48(1):409-16. https://doi.org/10.1016/j.fct.2009.10.030 PMid:19883714 PMCid:PMC2905152 DOI: https://doi.org/10.1016/j.fct.2009.10.030

Baldissarelli J, Santi A, Schmatz R, Zanini D, Cardoso AM, Abadalla FH, et al. Quercetin changes purinergic enzyme activities and oxidative profile in platelets of rats with hypothyroidism. Biomed Pharmacother. 2016; 84:1849-57. https://doi.org/10.1016/j.biopha.2016.10.109 PMid:27832996 DOI: https://doi.org/10.1016/j.biopha.2016.10.109

Bennetau-Pelissero C. Risks and benefits of phytoestrogens: where are we now? Curr Opin Clin Nutr Metab Care. 2016; 19(6):477-83. https://doi.org/10.1097/MCO.0000000000000326 PMid:27749767 DOI: https://doi.org/10.1097/MCO.0000000000000326

Giuliani C. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells. Antioxidants (Basel). 2019; 8(5):112-23. https://doi.org/10.3390/antiox8050112 PMid:31035637 PMCid:PMC6562732 DOI: https://doi.org/10.3390/antiox8050112

Habza-Kowalska E, Kaczor AA, Żuk J, Matosiuk D, Gawlik-Dziki U. Thyroid peroxidase activity is inhibited by phenolic compounds-Impact of interaction. Molecules. 2019; 24(15):2766-82. https://doi.org/10.3390/molecules24152766 PMid:31366075 PMCid:PMC6696198 DOI: https://doi.org/10.3390/molecules24152766

Matthies A, Loh G, Blaut M, Braune A. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr. 2012; 142(1):40-6. https://doi.org/10.3945/jn.111.148247 PMid:22113864 DOI: https://doi.org/10.3945/jn.111.148247

Vázquez L, Flórez AB, Guadamuro L, Mayo B. Effect of soy isoflavones on growth of representative bacterial species from the human gut. Nutrients. 2017; 9(7):72736. https://doi.org/10.3390/nu9070727 PMid:28698467 PMCid:PMC5537841 DOI: https://doi.org/10.3390/nu9070727

Wyns C, Bolca S, De Keukeleire D, Heyerick A. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2010; 878(13-14):949-56. https://doi.org/10.1016/j.jchromb.2010.02.022 PMid:20299290 DOI: https://doi.org/10.1016/j.jchromb.2010.02.022

Piccolo BD, Mercer KE, Bhattacharyya S, Bowlin AK, Saraf MK, Pack L, et al. Early postnatal diets affect the bioregional small intestine microbiome and ileal metabolome in neonatal pigs. J Nutr. 2017; 147(8):1499-509. https://doi.org/10.3945/jn.117.252767 PMid:28659406 DOI: https://doi.org/10.3945/jn.117.252767

Smith BN, Oelschlager ML, Abdul Rasheed MS, Dilger RN. Dietary soy isoflavones reduce pathogen-related mortality in growing pigs under porcine reproductive and respiratory syndrome viral challenge. J Anim Sci. 2020; 98(2):49. https://doi.org/10.1093/jas/skaa024 PMid:31960037 PMCid: PMC7023622 DOI: https://doi.org/10.1093/jas/skaa024

Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol. 2012; 355:192-200. https://doi.org/10.1016/j.mce.2011.05.049 PMid:22210487 DOI: https://doi.org/10.1016/j.mce.2011.05.049

Hamilton-Reeves JM, Vazquez G, Duval SJ, Phipps WR, Kurzer MS, Messina MJ. Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertil Steril. 2010; 94(3):997-1007. https://doi.org/10.1016/j.fertnstert.2009.04.038 PMid:19524224 DOI: https://doi.org/10.1016/j.fertnstert.2009.04.038

Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review

of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic carcinogenic properties. Food Chem Toxicol. 2007; 45(11):2179-205. https://doi.org/10.1016/j.fct.2007.05.015 PMid:17698276 DOI: https://doi.org/10.1016/j.fct.2007.05.015

Erdman JW Jr., Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, et al. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. Proceedings of the ILSI North America flavonoids workshop. J Nutr. 2007; 137(3); Suppl 1:718S-37S. https://doi.org/10.1093/jn/137.3.718S PMid:17311968 DOI: https://doi.org/10.1093/jn/137.3.718S

Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008; 88(1):38-50. https://doi.org/10.1093/ajcn/88.1.38 PMid:18614722 DOI: https://doi.org/10.1093/ajcn/88.1.38

Lambert JD, Sang S, Yang CS. Possible controversy over dietary polyphenols: benefits vs. risks. Chem Res Toxicol. 2007; 20(4):583-5. https://doi.org/10.1021/tx7000515 PMid:17362033 DOI: https://doi.org/10.1021/tx7000515

Egert S, Rimbach G. Which sources of flavonoids: complex diets or dietary supplements? Adv Nutr. 2011; 2(1):8-14. https://doi.org/10.3945/an.110.000026 PMid:22211185 PMCid:PMC3042792 DOI: https://doi.org/10.3945/an.110.000026

Prasain JK, Carlson SH, Wyss JM. Flavonoids, and age-related disease: risk, benefits and critical windows. Maturitas. 2010; 66(2):163-71. https://doi.org/10.1016/j.maturitas.2010.01.010 PMid:20181448 PMCid:PMC2879453 DOI: https://doi.org/10.1016/j.maturitas.2010.01.010

Most read articles by the same author(s)

1 2 > >>