Green Nanotechnology: How Plants Can Help Synthesize Nanoparticles for Biomedical and Environmental Purposes

Jump To References Section

Authors

  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2024/36086

Keywords:

Gold Nanoparticles, Green Synthesis, Nanoparticles, Plant Extracts, Phytochemicals, Silver Nanoparticle

Abstract

Nanoscale materials known as nanoparticles exhibit distinctive properties and functionalities owing to their minute size and expansive surface area. Employing plant extracts for nanoparticle synthesis represents an environmentally conscious and sustainable method that utilizes natural resources as both reducing and capping agents. This comprehensive review presents the current state-of-the-art in the green synthesis of nanoparticles using plant extracts. It specifically explores the interplay between phytochemicals and metal ions, highlighting the impact of phytochemicals on various nanoparticle properties such as size, shape, morphology, crystal structure, elemental composition, surface charge, and optical characteristics. The applications of these nanoparticles such as silver nanoparticles, gold nanoparticles, zinc oxide nanoparticles etc. span diverse fields, including biomedical, environmental, catalytic, optical, electrical, and magnetic applications. The review also addresses challenges and future directions in this burgeoning field, emphasizing the necessity for standardization and optimization of synthesis parameters, elucidation of the synthesis mechanism and kinetics, and exploration of functionalization and potential applications. In conclusion, the green synthesis of nanoparticles using plant extracts emerges as a promising and evolving field with considerable potential for future research and development.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-28

How to Cite

Kumari, M., Sadhu, P., Talele, C., & Shah, N. (2024). Green Nanotechnology: How Plants Can Help Synthesize Nanoparticles for Biomedical and Environmental Purposes. Journal of Natural Remedies, 24(5), 1021–1034. https://doi.org/10.18311/jnr/2024/36086

Issue

Section

Short Review

Categories

Received 2024-01-05
Accepted 2024-02-28
Published 2024-05-28

 

References

Jarvie H, Dobson P, King S. Nanoparticle. Encyclopedia Britannica, May 14, 2019. https://www.britannica.com/science/nanoparticle

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Arab J Chem. 2019; 12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011

Varghese RJ, Parani S, Thomas S, Oluwafemi OS, Wu J. Introduction to nanomaterials: Synthesis and applications. InNanomaterials for solar cell applications. Elsevier. 2019. p. 75-95.

Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. InAIP conference proceedings. AIP Publishing. 2016; 1724(1). https://doi.org/10.1063/1.4945168

Nadaf SJ, Jadhav NR, Naikwadi HS, Savekar PL, Sapkal ID, Kambli MM, Desai IA. Green synthesis of gold and silver nanoparticles: Updates on research, patents and future prospects. OpenNano. 2022: p. 100076. https://doi.org/10.1016/j.onano.2022.100076

Majeed S, Joel EL, Hasnain MS. Novel green approach for synthesis of metallic nanoparticles and its biomedical application. Current Nanomedicine. 2018; 8(3):177-83. https://doi.org/10.2174/2468187308666180301142158

Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 2021; 199:344-70. https://doi.org/10.1007/s12011-020-02138-3 PMid:32377944.

Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S. Green nanotechnology: A review on green synthesis of silver nanoparticles-An eco-friendly approach. Int J Nanomedicine. 2019; 14:5087-107. https://doi.org/10.2147/IJN.S200254 PMid:31371949 PMCid: PMC6636611.

Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Chiangmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021; 11(5):2804-37. https://doi.org/10.1039/D0RA09941D PMid:35424248 PMCid: PMC8694026.

Chikdu D, Pal P, Gujar A, Deshmukh R, Kate S. Green synthesis and characterisation of silver nanoparticles by using Aloe barbadensis and its antibacterial activity. J Global Biosci. 2015; 4(7):2713-9.

Vijaya PP, Rekha B, Mathew AT, Syed Ali M, Yogananth N, Anuradha V, Kalitha Parveen P. Antigenotoxic effect of green-synthesised silver nanoparticles from Ocimum sanctum leaf extract against cyclophosphamide induced genotoxicity in human lymphocytes-in vitro. Appl Nanosci. 2014; 4(4):415-20. https://doi.org/10.1007/s13204-013-0212-2

Premkumar J, Sudhakar T, Dhakal A, Shrestha JB, Krishnakumar S, Balashanmugam P. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal Agric Biotechnol. 2018; 15:311-6. https://doi.org/10.1016/j.bcab.2018.06.005

Von White G, Kerscher P, Brown RM, Morella JD, McAllister W, Dean D, Kitchens CL. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J Nanomater. 2012; p. 730746. https://doi.org/10.1155/2012/730746 PMid:24683414 PMCid: PMC3966315.

Yang N, Li F, Jian T, Liu C, Sun H, Wang L, Xu H. Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens. Acta Oceanologica Sinica. 2017; 36: 95-100. https://doi.org/10.1007/s13131-017-1099-7

Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B Biointerfaces. 2011; 82(1):152-9. https://doi.org/10.1016/j.colsurfb.2010.08.036 PMid:20833002.

Ulaeto SB, Mathew GM, Pancrecious JK, Nair JB, Rajan TP, Maiti KK, Pai BC. Biogenic Ag nanoparticles from neem extract: Their structural evaluation and antimicrobial effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomater Sci Eng. 2019; 6(1):235-45. https://doi.org/10.1021/acsbiomaterials.9b01257 PMid: 33463216.

Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu CP. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Asp. 2014; 444:226-31. https://doi.org/10.1016/j.colsurfa.2013.12.065

Waidha AI, Pandiyarasan V, Anusya T, Waidha KM, Shah AH, Pandiyarasan V. Synthesis and characterisation of silver nano rod-like structure54s by green synthesis method using Curcumin longa. Int J Chem Tech Res. 2015; 7:1504-8.

Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: A review. Environ Chem Lett. 2021; 19:355-74. https://doi.org/10.1007/s10311-020-01074-x

Bala A, Rani G. A review on photosynthesis, affecting factors and characterisation techniques of silver nanoparticles designed by green approach. Int Nano Lett. 2020; 10(3):159-76. https://doi.org/10.1007/s40089-020-00309-7

Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, Haleem S, Rooman M, Norin S, Khan SN. A systematic review of medicinal plants used against Echinococcus granulosus. Plos One. 2020; 15(10):e0240456. https://doi.org/ 10.1371/journal.pone.0240456 PMid:33048959 PMCid: PMC7553295.

Aghajani Kalaki Z, SafaeiJavan R, Faraji H. Procedure optimisation for green synthesis of silver nanoparticles by Taguchi method. Micro Nano Lett. 2018; 13(4):558-61. https://doi.org/10.1049/mnl.2017.0308

Roy P, Das B, Mohanty A, Mohapatra S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci. 2017; 7(8):843-50. https://doi.org/10.1007/s13204-017-0621-8

Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A. Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterisation and evaluation of their antioxidant and antimicrobial properties. Nanomaterials. 2022; 12(12):2013. https://doi.org/10.3390/nano12122013 PMid:35745352 PMCid: PMC9227472.

Ahmed S, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016; 9(1):1-7. https://doi.org/10.1016/j.jrras.2015.06.006

Verma A, Mehata MS. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci. 2016; 9(1):109-15. https://doi.org/10.1016/j.jrras.2015.11.001

Priyadarshini S, Sulava S, Bhol R, Jena S. Green synthesis of silver nanoparticles using Azadirachta indica and Ocimum sanctum leaf extract. Curr Sci. 2019; 117(8):1300-7. https://doi.org/10.18520/cs/v117/i8/1300-1307

Takci DK, Genc S, Takci HA. Cinnamon-Based rapid biosynthesis of silver nanoparticles; Its characterisation and antibacterial properties. J Cryst Growth. 2023; 623:127416. https://doi.org/10.1016/j.jcrysgro.2023.127416

Mourdikoudis S, Pallares RM, Thanh NT. Characterisation techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018; 10(27):12871-934. https://doi.org/10.1039/C8NR02278J PMid:29926865.

Englebienne P, Van Hoonacker A, Verhas M. Surface plasmon resonance: Principles, methods and applications in biomedical sciences. J Spectrosc (Hindawi). 2003; 17(2-3):255-73. https://doi.org/10.1155/2003/372913

Begum R, Farooqi ZH, Naseem K, Ali F, Batool M, Xiao J, Irfan A. Applications of UV/Vis spectroscopy in characterisation and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit Rev Anal Chem. 2018; 48(6):503-16. https://doi.org/10.1080/10408347.2018.1451299 PMid:29601210.

Giannini C, Ladisa M, Altamura D, Siliqi D, Sibillano T, De Caro L. X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals. 2016; 6(8):87. https://doi.org/10.3390/cryst6080087

Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-A comparative study. Mater Chem Phys. 2020; 239:122021. https://doi.org/10.1016/j.matchemphys.2019.122021

Valentim B, Hower JC, Guedes A, Flores D. Scanning electron microscopy and energy-dispersive X-ray spectroscopy of low-sulfur coal fly ash. Inter J Ener Clean Env. 2009; 10:1-4. https://doi.org/10.1615/InterJEnerCleanEnv.2011001526

Akhtar K, Khan SA, Khan SB, Asiri AM. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Sharma S. (eds) Handbook of Materials Characterization. Springer, Cham. 2018. p. 113-45. https://doi.org/10.1007/978-3-319-92955-2_4

Deepak FL, Mayoral A, Arenal R, editors. Advanced transmission electron microscopy: Applications to nanomaterials. Springer; 2015. https://doi.org/10.1007/978-3-319-15177-9

Xia F, Youcef-Toumi K. Advanced atomic force microscopy modes for biomedical research. Biosensors. 2022; 12(12):1116. https://doi.org/10.3390/bios12121116 PMid:36551083 PMCid: PMC9775674.

Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J Nanobiotechnology. 2020; 18(1):172. https://doi.org/10.1186/s12951-020-00704-4 PMid:33225973 PMCid: PMC7682049.

Khan MR, Hoque SM, Hossain KF, Siddique MA, Uddin MK, Rahman MM. Green synthesis of silver nanoparticles using Ipomoea aquatica leaf extract and its cytotoxicity and antibacterial activity assay. Green Chem Lett Rev. 2020; 13(4):303-15. https://doi.org/10.1080/17518253.2020.1839573

Narayana A, Bhat SA, Fathima A, Lokesh SV, Surya SG, Yelamaggad CV. Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Adv. 2020;10(23):13532-42. https://doi.org/10.1039/D0RA00478B PMid:35492987 PMCid: PMC9051533.

Chugh D, Viswamalya VS, Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol. 2021; 19(1):1-21. https://doi.org/10.1186/s43141-021-00228-w PMid:34427807 PMCid: PMC8385017.

Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho M, Lee SM, Park JH, Oh SG, Bang KS, Oh BT. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng. 2014; 37:1935-43. https://doi.org/10.1007/s00449-014-1169-6 PMid:24668029.

Khan S, Al-Qurainy F, Al-Hashimi A, Nadeem M, Tarroum M, Shaikhaldein HO, Salih AM. Effect of green synthesised ZnO-NPs on growth, antioxidant system response and bioactive compound accumulation in Echinops macrochaetus, a potential medicinal plant, and assessment of genome size (2C DNA content). Plants. 2023; 12(8):1669. https://doi.org/10.3390/plants12081669 PMid:37111892 PMCid: PMC10141689.

Nande A, Raut S, Michalska-Domanska M, Dhoble SJ. Green synthesis of nanomaterials using plant extract: A review. Curr Pharm Biotechnol. 2021; 22(13):1794-811. https://doi.org/10.2174/18734316MTExeNTky1. https://doi.org/10.2174/1389201021666201117121452 PMid:33208069.

Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M. Green synthesis of nanoparticles and their biomedical applications: A review. ACS Appl Nano Mater. 2021; 4(11):11428-57. https://doi.org/10.1021/acsanm.1c02946

Javed R, Ghonaim R, Shathili A, Khalifa SA, El-Seedi HR. Phytonanotechnology: A greener approach for biomedical applications. In Biogenic Nanoparticles for Cancer Theranostics. Elsevier. 2021. p. 43-86. https://doi.org/10.1016/B978-0-12-821467-1.00009-4

Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ. 2016; 4:e2589. https://doi.org/10.7717/peerj.2589 PMid:27781173 PMCid: PMC5075710.

Patra JK, Baek KH. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal and antioxidant activities of gold nanoparticles biosynthesised using fruit waste materials. Int J Nanomedicine. 2016; 11:4691-705. https://doi.org/10.2147/IJN.S108920 PMid:27695326 PMCid: PMC5028107.

Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020; 10(9):1763. https://doi.org/10.3390/nano10091763. PMid:32906575 PMCid: PMC7558319.

Santhosh SB, Shanmugarama S, Ramesh N, Tharik AM, Basamshetty VV. Recent patents on plant-derived nanoparticles and their potential application towards various cancer therapeutics. Recent Pat Anticancer Drug Discov. 2023; 18(3):292-306. https://doi.org/10.2174/1574892817666220420122426 PMid:35450532.

Padalia H, Moteriya P, Chanda S. Synergistic antimicrobial and cytotoxic potential of zinc oxide nanoparticles synthesised using Cassia auriculata leaf extract. Bionanoscience. 2018; 8:196-206. https://doi.org/10.1007/s12668-017-0463-6

Linley S, Thomson NR. Environmental applications of nanotechnology: nano-enabled remediation processes in water, soil and air treatment. Water Air Soil Pollut. 2021; 232:1-50. https://doi.org/10.1007/s11270-021-04985-9

Rozhin A, Batasheva S, Kruychkova M, Cherednichenko Y, Rozhina E, Fakhrullin R. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents. Micromachines. 2021; 12(12):1480. https://doi.org/10.3390/mi12121480 PMid:34945330 PMCid: PMC8708042.

Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon. 2021; 7(3):e06456. https://doi.org/10.1016/j.heliyon.2021.e06456 PMid:33763612 PMCid: PMC7973307.

Most read articles by the same author(s)