Study of Adsorption of Malachite Green on Dried Aspergillus versicolor (MTCC280) Biomass

Jump To References Section

Authors

  • Department of Food Technology & Bio-Chemical Engineering, Jadavpur University, Kolkata ,IN
  • Department of Food Technology & Bio-Chemical Engineering, Jadavpur University, Kolkata ,IN
  • Department of Food Technology & Bio-Chemical Engineering, Jadavpur University, Kolkata ,IN
  • Department of Chemistry, Sree Chaitanya College, Habra, North 24-Parganas, West Bengal ,IN
  • Department of Food Technology & Bio-Chemical Engineering, Jadavpur University, Kolkata ,IN

DOI:

https://doi.org/10.18311/jsst/2017/16392

Keywords:

Biosorption, Isotherm, Kinetics, Malachite Green, SEM

Abstract

Dyes are extensively used in textile, tannery, food, paper and pulp, printing industries to color their products. About 10-15% of the annual global production (2,80,000 tons) of dyes are discharged as effluent mainly by textile and paint industries. The majority of the dyes are toxic and cause damage to aquatic life. In this study biosorption of Malachite Green (MG) onto the lyophilised Aspergillus versicolor Biomass (AVB) was investigated with variation in pH, temperature, contact time, biosorbent concentration and dye concentration. Characterization of the dye-biosorbent interaction was studied by scanning electron microscopy. It was observed from the present study that the biosorption of Malachite green was maximum at pH 5.0, temperature of 30°C, and adsorbent concentration of 2g/L. The rate of adsorption was found to be very fast at the initial phase and the equilibrium reached within 270 min following the pseudo-second order rate kinetics. The adsorption process followed Freundlich Isotherm model. The treated and untreated AVB was characterized for the investigation of possible dye-biosorbent interaction and surface morphology by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) respectively. The results show that the present study may help designing a promising route towards bioremediation of the hazardous chemical MG.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-07-24

How to Cite

Bag, S., Bardhan, A., Bera, D., Mitra, A., & Halder, D. (2017). Study of Adsorption of Malachite Green on Dried <I>Aspergillus versicolor</I> (MTCC280) Biomass. Journal of Surface Science and Technology, 33(1-2), 70–78. https://doi.org/10.18311/jsst/2017/16392

Issue

Section

Articles
Received 2017-07-06
Accepted 2017-07-06
Published 2017-07-24

 

References

X. J. Wang, X. Y. Gu, D. X. Lin, F. Dong, X. F. Wan, Dyes Pigm. 74(3), 736 (2007).

H. Zollinger, "Colour chemistry-synthesis, properties and applications of organic dyes and pigments”. VCH, New York, 92(1987).

C. O'Neill, F. R. Hawkes, D. L. Hawkes, N. D. Lourenyo, H. M. Pinheiro, W. Delee, J. Chem. Technol. Biotechnol., l74,1009-1018(1999).

H. Ali, Water Air Soil Pollut., doi l007/s 11270-010-03824(2010).

Q. Husain, Crit. Rev. Biotechnol., 26, 201-221 (2006).

M. Sastri, A. Ahmad, M.I. Khan, R. Kumar, Curr. Sci. 85, 162-170 (2003).

Li, N., Bai, R., Sep. Purif. Technol. 42, 237-247 (2005).

S. K. Das, J. Bhowal, A. R. Das, A. K. Guha, Langmuir. 22, 7265-7272 (2006).

K. Gupta, Om P. Khatri J. Colloid Interface Sci. 501, 11–21(2017) .

T. O'Mahony, E. Guibal, J. M. Tobin, Enzyme Microb. Technol. 31, 456–463 (2002).

A. Ozer, G. Akkaya, M. Turabik, J. Hazard. Mater. B.126, 119–127 (2005).

Z. DonmezAksu, A. Ozturk, T. A. Kutsal, Process Biochem. 34,885-92 (1999).

X. F. Sun, S. G. Wang, X. W. Liu, W. X. Gong, N. Bao, B. Y. Gao, H. Y. Zhang, Bioresour. Technol. 99, 3475–3483 (2008).

F. Deniz , R. A. Kepekci, J. Mol. Liq. 219,194–200 (2016).

P. Saha, S. Chowdhury, S. Gupta, I. Kumar, R. Kumar, Clean. 38(5–6), 437 (2010).

M. Hema, S. Arivoli, J. Appl. Sci. Environ. Manage. 12, 43 (2008).

C. Y. Tan, G. Li, X. Q. Lu, Z. L. Chen, Ecol. Eng. 36, 1333– 1340 (2010).

E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Sillanpää, A. Bhatnagar, Chem. Eng. J. 307, 435–446 (2017).

M. S. Mahmoud, M. K. Mostafa, S. A. Mohamed, N. A. Sobhy, M. Nasrd, J. Environ. Chem. Eng. 5, 547–554 (2017).

G. C. Imelda, M. B. Liliana, C. U. Eliseo J. Environ. Manage 152, 99-108 (2015).

Y.S Ho, G. McKay, Water Res. 33(2), 578 (1999).

Y.S. Ho, G. McKay, Chem. Eng. J. 70, 115 (1998).

K.V. Kumar, S. Sivanesan, V. Ramamurthi, Process Biochem. 40, 2865–2872 (2005).

H. Bairagia, M. M. R. Khan, L. Raya, A. K. Guha, J. Hazard. Mater. 186, 756–764 (2011).

F. Deniz, E.T. Ersanli, Microchem. J. 128, 312-319 (2016).

S. Agarwal, I. Tyagi , V. K. Gupta, N. Ghasemi, M. Shahiv, M. Ghasemi, J. Mol. Liq. 218, 208–218 (2016).

A. Sari, M. Tuzen, D. Citak, M. Soylak, J. Hazard. Mater. 149, 283–291 (2007).

R. Rakhshaee, M. Khosravi, M.T. Ganji, J. Hazard. Mater. 134, 120–129 (2006).

T. Akar, I. Tosun, Z. Kaynak, E. Kavas, G. Incirkus, S. T. Akar, J. Hazar. Mater. 171, 865–871( 2009).

L. Jin, R. Bai, Langmuir. 18, 9765–9770 (2002).

J. R. Heber, R. Stevenson, O. Boldman, Science. 116, 111– 116 (1952).

E. Guibal. C. Roulph, P. Cloirec, Environ. Sci. Technol. 29, 2496–2503 (1995).

J. Schmitt, H. C. Flemming, Int. Biodeterior. Biodegrad. 41, 1–11 (1998).

G. Naja, C. Mustin, J. Berthelin, B. Volesky, J. Colloid Interface Sci. 292, 537–543 (2005).

J. Mao, S. W. Won, S. B. Choi, M. W. Lee, Y. S. Yun, Biochem. Eng. J. 46, 1–6 (2009).

K. Vijayaraghavan, S. W. Won, J. Mao, Y. S. Yun, Chem. Eng. J. 145, 1–6 (2008).

M. H. Han, Y. S. Yun, Biochem. Eng. J. 36, 2–7 (2007).

Z. Chen, H. Deng, C. Chen, Y. Yang, H. Xu, J. Environ. Health Sci. Eng. 12, 63 (2014).