Structural Stabilization and Functional Enhancement of Miceller Protein α-Crystallin by ATP and Zn2+

Jump To References Section

Authors

  • Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata - 700 009, West Bengal ,IN
  • Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata - 700 009, West Bengal ,IN
  • Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata - 700 009, West Bengal ,IN

DOI:

https://doi.org/10.18311/jsst/2015/1698

Keywords:

Alpha Crystallin, Chaperone Function, Eye Lens Protein, Metal Binding, Miceller Protein, Protein Aggregation
Molecular Biology

Abstract

α-Crystallin is the most abundant protein of the eye lens. It has a micelle like associated structure and has a special chaperone- like property to prevent aggregation of other proteins. This function of α-crystallin plays a crucial role in maintaining the transparency of eye lens. Because of the absence of protein turn over in the lens, the proteins in the lens must survive the entire lifetime of the living species. This requires high structural stability of α-crystallin. In this article we present a brief review of our work on the mechanism of stabilization of α-crystallin by Zn. We have shown that some metal ions, Zn in particular play a very important role in enhancing the function of α-crystallin by enhancing its exposed hydrophobic surface. We have also characterized the Zn binding to α-crystallin by MALDI mass spectrometry and have shown that the structural stabilization occurs through intersubunit bridging by Zn. The binding region in the α-crystallin sequence has also been identified. The physiological relevance of enhanced chaperone function and structural stability is discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-06-16

How to Cite

Karmakar, S., Biswas, A., & Das, K. P. (2015). Structural Stabilization and Functional Enhancement of Miceller Protein α-Crystallin by ATP and Zn2+. Journal of Surface Science and Technology, 31(1-2), 13–20. https://doi.org/10.18311/jsst/2015/1698

Issue

Section

Articles

 

References

J. Harding, "Cataract : Biochemistry, Epidemiology and Pharmacology”, Chapman and Hall, London, 1991.

J. Forrester, A. Dick, P. McMenamin and W. Lee, "The Eye: Basic Sciences in Practice”, W. B. Saunders Company Ltd., London, 1996, pp. 28.

H. J. Hoenders and H. Bloemendal, "Molecular and Cellular Biology of the Eye Lens”, ed. H. Bloemendal, John Wiley & Sons, New York, 1981, 279.

J. Horwitz, Alpha-crystallin can function as a molecular chaperone, Proc. Natl. Acad. Sci. U.S.A., 89, 10449 (1992).

B. Raman and C. M. Rao, J. Biol. Chem., 26, 27264 (1994).

B. Raman, T. Ramakrishna and C. M. Rao, FEBS Lett., 365,133 (1995).

K. P. Das and W. K. Surewicz, FEBS Lett. 369, 321 (1995).

K. P. Das and W. K. Surewitz, Biochem. J., 311, 367 (1995).

K. P. Das, J. M. Petrash and W. K. Surewicz, J. Biol. Chem. 271, 10449 (1996).

J. Bhattacharyya, and K. P. Das, Biochem. Mol. Biol. Int., 46,249 (1998).

G. B. Reddy, K. P. Das, J. M. Petrash and W. K. Surewicz, J.Biol. Chem., 275, 4565 (2000).

K. P. Das, L. P. Choo-Smith, J. M. Petrash and W. K. Surewicz, J. Biol. Chem. 274, 33209 (1999).

M. Maiti, M. Kono and B. Chakroborty, FEBS Lett. 236, 109 (1988).

J. G. Bindles, R. J. Sizen, H. J. Hoenders, Opthalmic Res., 11,441 (1979).

M. T. Walsh, A. C. Sen and B. Chakroborty, J. Biol. Chem.266, 20079 (1991).

R. C. Augusteyn and J. F. Koretz, FEBS Lett., 222, 1 (1987).

G. Wistow, Exp. Eye. Res., 56,729 (1993).

A. Biswas, S. Saha and K. P. Das, J. Surface. Sci. Technol., 18,1 (2002).

F. U. Hart, Nature, 381, 571(1996).

K. Braig, Z. Otwinowski, R. Hedge, D. C. Boisvert, A. Joachimik, A. L. Horwich and P. B. Singler, Nature, 371, 578 (1994).

D. C. Boisvert, J. Wang, Z. Otwinowski, A. L. Horwich and P. B. Singler, Nature. Struc. Biol., 3, 170 (1996).

P. J. Muchowski and J. I. Clark, Proc. Natl. Acad. Sci. U. S. A.,95, 1004 (1998).

D. Nath, U. Rawat and M. Rao, Protein Sci., 119, 2727 (2002).

K. Wang and A. Spector, Eur. J. Biochem., 267, 4705 (2000).

F. Narberhaus, Mol. Biol. Rev., 66, 64(2002).

J. Horwitz, Exp. Eye Res., 76, 145 (2003).

A. Biswas and K. P. Das, J. Biol. Chem., 279, 42648 (2004).

A. Biswas and K. P. Das, Biochemistry, 47, 804 (2008).

S. Karmakar and K. P. Das, Biopolymers, 95, 105 (2011).

S. Karmakar and K. P. Das, Protein J., 31, 623 (2012).

A. Biswas, S. Karmakar, A. Chowdhury and K. P. Das, Biochim. Biophys. Acta. General, in press, (2015).

A. Biswas, S. Karmakar, V. Banerjee, S. Saha, M. Kundu, J. Bhattacharyya, D. C. Konar and K. P. Das. J. Indian Chem.Soc., 88, 1827 (2011).

J. V. Greiner, S. J. Kopp and T. Glonek, Invest. Ophthalmol. Vis. Sci., 26, 537 (1985).

B. S. Khakh and G. Burnstock, Sci. Am., 301, 84 (2009).

A. Spector, R. Chiesa, J. Sredy and W. Garner, Proc. Natl.Acad. Sci. U S A., 82, 4712 (1985).

C. E. Vooter, J. W. Mulders, H. Bloemendal and W. W. de Jong, A, Eur. J. Biochem., 160, 203 (1986).

M. C. Reddy, D. V. Palmisano, B. Groth-Vasselli and P. N. Farnsworth, Biochem. Biophys. Res. Commun., 189, 1578 (1992).

D. V. Palmisano, B. Groth-Vasselli, P. N. Farnsworth and M. C. Reddy, Biochim. Biophys. Acta, 1246, 91 (1995).

M. Kantorow and J. Piatigorsky, Proc. Natl. Acad. Sci. U. S. A., 91, 3112 (1994).

M. Kantorow, J. Horwitz, M. A. M. Van Boekel. W. W. de Jong and J. Piatigorosky, J. Biol. Chem., 270, 17215 (1995).

K. Wang and A. Spector, Eur. J. Biochem., 268, 6335 (2001).

K. Wang, W. Ma and A. Spector, Exp. Eye Res., 61, 115 (1995).

B. H. Grahn, P. G. Paterson, K. T. Gottschall-Pass and Z. Zhang, J. Am. Coll. Nutr., 20, 106 (2001).

J. S. Fabe, B. H. Grahn and P. G. Paterson, Biol. Trace. Elem. Res., 75, 43 (2000).

H. Birkedal-Hansen, W. G. Moore, M. K. Bodden, L. J. Windsor, B. Birkedal-Hansen, A. DeCarlo and J. A. Engler, Crit. Rev. Oral Biol. Med., 4, 197 (1993).

E. Koumantakis, D. Alexiou, A. Grimanis, D. Kaskarelis and A. Bouzas, Ophthalmologica, 186, 41 (1983).

S. Okuyama, S. Hashimoto, H. Aihara, W. M. Willingham and J. R. Sorenson, Agents Actions, 21, 130 (1987).

Y. Sharma, C. M. Rao, M. L. Narasu, S. C. Rao, T. Somasundaram, A. Gopalakrishna and D. Balasubramanian, J. Biol. Chem. 264, 12794 (1989).

B. Rajini, P. Shridas, C. S. Sundari, D. Muralidhar, S. Chandani, F. Thomas, and Y. Sharma, J. Biol. Chem., 276,38464 (2001).

L. J. del Valle, C. Escribano, J. J. Perez, and P. Garriga, Biochim. Biophys. Acta, 1601, 100 (2002).

I. Marini, L. Bucchioni, M. Voltarelli, A. Del Corso, and U. Mura, Biochem. Biophys. Res. Commun., 212, 413 (1995).

A. Coi, A. M. Bianucci, M. L. Ganadu, and G. M. Mura, Int. J. Biol. Macromol., 36, 208 (2005).

M. L. Ganadu, M. Aru, G. M. Mura, A. Coi, P. Mlynarz and H. Kozlowski, J. Inorg. Biochem., 98, 1103 (2004).

T. X. Sun, N. J. Akhtar and J. J. Liang, J. Biol. Chem. 274, 34067 (1999).

B. K. Das, T. Bhattacharyya and S. Roy, Biochemistry, 34, 5242 (1995).

A. Biswas and K. P. Das, Biopolymers, 85, 189 (2007).

M. Holmgren, K. S. Shin and G. Yellen, Neuron, 21, 617 (1998).

S. M. Webster, D. C. Del, J. P. Dekker and G. Yellen, Nature, 428, 864 (2004).

E. J. Neale, D. J. Elliot, M. Hunter and A. J. Sivaprasadrao, Biol. Chem., 278, 29079 (2003).

O. P. Srivastava, K. Srivastava and C. Silney, Curr. Eye Res., 5, 511 (1996).

P. Santhoshkumar, P. Udupa, R. Murugesan, K. K. Sharma, J. Biol. Chem., 283, 8477 (2008).

P. Santhoshkumar, M. Raju, K. K. Sharma, PLoS One 6, e19291 (2011).