Impregnation of Activated Carbon in Polyurethane Foam for Enhanced Solvent and Oil Adsorption from Water

Jump To References Section

Authors

  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat – 395007, Gujarat ,IN
  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat – 395007, Gujarat ,IN
  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat – 395007, Gujarat ,IN
  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat – 395007, Gujarat ,IN
  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat – 395007, Gujarat ,IN

DOI:

https://doi.org/10.18311/jsst/2020/24415

Keywords:

Activated Carbon (AC), Poly-Urethane Foam (PUF), Sorption Efficiency, Tung Oil (TO), Wettability
Surfactant Science, Polymer Chemistry

Abstract

This study illustrates the modification of the Poly-Urethane Foam (PUF) prepared from the Tung Oil (TO) and later impregnating it with varying ratio (~ 1 to 5 w/w%) of Activated Carbon (AC) which enable this modified entity to act as an effective adsorbent for the solvent and oil removal from the water. After its modification, it was found that the PUF impregnated with 5 w/w% AC displayed an enhanced solvent and oil adsorption capacity. The reusability of the adsorbent was observed to decrease with increasing number of cycles. Furthermore, the adsorption conduct was calculated in a batch-type process and validated using equilibrium and kinetics study. Here, the surface-modified PUF sorbent was characterized employing Scanning Electron Microscopy (SEM) and Contact Angle (CA) wettability study. Our findings inferred that with increasing AC ratio in the foam, its pore size and CA increases thereby enhancing the adsorption capacity making this proposed study to be more expedient for sustainable environment safety.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-04-09

How to Cite

Shirke, A. G., Desai, P., Vashisht, M., Dholakiya, B. Z., & Kuperkar, K. (2021). Impregnation of Activated Carbon in Polyurethane Foam for Enhanced Solvent and Oil Adsorption from Water. Journal of Surface Science and Technology, 36(3-4), 125–135. https://doi.org/10.18311/jsst/2020/24415

 

References

D. Streimikiene. Intellectual. Economic., 9, 67 (2015). https://doi.org/10.1016/j.intele.2015.10.001. DOI: https://doi.org/10.1016/j.intele.2015.10.001

N. Abdel-Raouf, A. A. Al-Homaidan and I. B. M. Ibraheem. Saudi J. Biol. Sci., 19, 257 (2012). https:// doi.org/10.1016/j.sjbs.2012.04.005. PMid: 24936135 PMCid:PMC4052567. DOI: https://doi.org/10.1016/j.sjbs.2012.04.005

J. C. Warner, A. S. Cannon and K. M. Dye. Environ. Impact Asses., 24, 775 (2004). https://doi.org/10.1016/j.eiar.2004.06.006. DOI: https://doi.org/10.1016/j.eiar.2004.06.006

S. Sidik, A. Jalil, S. Triwahyono, S. Adam, M. Satar and B. Hameed. Chem. Eng. J., 203, 9 (2012). https://doi.org/10.1016/j.cej.2012.06.132. DOI: https://doi.org/10.1016/j.cej.2012.06.132

Keshavarz, H. Zilouei, A. Abdolmaleki, A. Asadinezhad and A. A. Nikkhah. Int. J. Environ. Sci. Technol., 13, 699 (2016). https://doi.org/10.1007/s13762-015-0908-9. DOI: https://doi.org/10.1007/s13762-015-0908-9

C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois and G. Anastopoulos. Desalinat., 140, 259 (2001). https:// doi.org/10.1016/S0011-9164(01)00375-7. DOI: https://doi.org/10.1016/S0011-9164(01)00375-7

Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng and L. A. Jiang. Adv. Mater., 23, 4270 (2011). https://doi.org/10.1002/adma.201102616. PMid: 22039595.

W. B. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin and L. Jiang. Adv. Mater., 25, 2071 (2013). https://doi.org/10.1002/ adma.201204520. PMid: 23418068. DOI: https://doi.org/10.1002/adma.201204520

C. Wang, T. Yao, J. Wu, C. Ma, Z. Fan, Z. Wang, Y. Cheng, Q. Lin and B. Yang. ACS Appl. Mater. Interfaces, 1, 2613 (2009). https://doi.org/10.1021/am900520z. PMid: 20356134. DOI: https://doi.org/10.1021/am900520z

J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao and L. Jiang. ACS Appl. Mater. Interfaces, 4, 3207 (2012). https://doi.org/10.1021/am300544d. PMid: 22620260. DOI: https://doi.org/10.1021/am300544d

X. Y. Zhang, Z. Li, K. S. Liu and L. Jiang. Adv. Funct. Mater, 23, 2881 (2013). https://doi.org/10.1002/ adfm.201202662. DOI: https://doi.org/10.1002/adfm.201202662

A. K. Kota, G. Kwon, W. Choi, J. M. Mabry and A. Tuteja. Nat. Commun., 3, 1025 (2012). DOI: https://doi.org/10.1038/ncomms2027

M. Inagaki, A. Kawahara, Y. Nishi and N. Iwashita. Carbon, 40, 1487 (2002). https://doi.org/10.1016/S00086223(01)00319-0. DOI: https://doi.org/10.1016/S0008-6223(01)00319-0

J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong and F. Stellacci. Nat. Nanotechnol., 3, 332 (2008). https://doi.org/10.1038/nnano.2008.136. PMid: 18654542. DOI: https://doi.org/10.1038/nnano.2008.136

Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng and L. Jiang. Adv. Mater., 23, 4270 (2011). https://doi.org/10.1002/adma.201102616. PMid: 22039595. DOI: https://doi.org/10.1002/adma.201102616

X. Gui, H. Li, K. Wang, J. Wei, Y. Jia, Z. Li, L. Fan, A. Cao, H. Zhu and D. Wu. Acta. Mater, 59, 4798 (2011). https:// doi.org/10.1016/j.actamat.2011.04.022. DOI: https://doi.org/10.1016/j.actamat.2011.04.022

F. Liu, S. Chung, G. Oh and T. S. Seo. ACS. Appl. Mater. Interfaces, 4, 922 (2012). https://doi.org/10.1021/ am201590z. PMid: 22206476. DOI: https://doi.org/10.1021/am201590z

A. A. Said, A. G. Ludwick and H. A. Aglan. Bioresource. Technol., 10, 2219 (2009). DOI: https://doi.org/10.1016/j.biortech.2008.09.060

J. Zhang and S. Seeger. Adv. Funct. Mater, 21, 4699 (2011). https://doi.org/10.1002/adfm.201101090. DOI: https://doi.org/10.1002/adfm.201101090

L. Wu, L. Li, B. Li, J. Zhang and A. Wang. ACS Appl. Mater. Interfaces, 7, 4936 (2015). https://doi.org/10.1021/ am5091353. PMid: 25671386.

Q. Zhu, Q. Pan and F. Liu. J. Phys. Chem. C., 115, 17464 (2011). https://doi.org/10.1021/jp2043027. DOI: https://doi.org/10.1021/jp2043027

Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang and J. Gao. ACS. Appl. Mater. Interfaces, 5, 10018 (2013). https://doi.org/10.1021/am4024252. PMid:24050505 DOI: https://doi.org/10.1021/am4024252

A. A. Al-Majed, A. R. Adebayo and M. E. Hossain. J. Environ. Manage., 113, 213 (2012). https://doi.org/10.1016/j.jenvman.2012.07.034. PMid: 23037316. DOI: https://doi.org/10.1016/j.jenvman.2012.07.034

H. Li, L. Liuand and F. Yang. Mar. Pollut. Bul., 64, 1648 (2012). https://doi.org/10.1016/j.marpolbul.2012.05.039. PMid: 22749062. DOI: https://doi.org/10.1016/j.marpolbul.2012.05.039

D. Wu, L. Fang, Y. Qin, W. Wu, C. Mao and H. Zhu. Mar. Pollut. Bul., 84, 263 (2014). https://doi.org/10.1016/j.marpolbul.2014.05.005. PMid: 24856092. DOI: https://doi.org/10.1016/j.marpolbul.2014.05.005

C. Y. Yin, M. K. Aroua and W. M. A. W. Daud. Sep. Purif. Technol., 52, 403 (2007). https://doi.org/10.1016/j.seppur.2006.06.009. DOI: https://doi.org/10.1016/j.seppur.2006.06.009

J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P. Alvarez, M. Alvim-Ferraz and J. Dias. J. Hazard. Mater., 187, 1 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.033. PMid: 21306824. DOI: https://doi.org/10.1016/j.jhazmat.2011.01.033

Y. B. Zhou, X. Y. Tang, X. M. Hu, S Fritschi and J. Lu. Sep. Purif. Technol., 63, 400 (2008). https://doi.org/10.1016/j.seppur.2008.06.002.

A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää. Chem. Eng. J., 219, 499 (2013). https://doi.org/10.1016/j.cej.2012.12.038. DOI: https://doi.org/10.1016/j.cej.2012.12.038

M. S. Shafeeyan, W. M. A. W Daud, A Houshmand and A Shamiri. J. Anal. Appl. Pyrol., 89, 143, (2010). https://doi.org/10.1016/j.jaap.2010.07.006.

Y. B. Zhou, X. Y. Tang, X. M. Hu, S Fritschi and J. Lu. Sep. Purif. Technol., 63, 400 (2008). https://doi.org/10.1016/j.seppur.2008.06.002. DOI: https://doi.org/10.1016/j.seppur.2008.06.002

M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand and A. Shamiri. J. Anal. Appl. Pyrol., 89, 143 (2010). https://doi.org/10.1016/j.jaap.2010.07.006. DOI: https://doi.org/10.1016/j.jaap.2010.07.006

E. A. Emam. Am. J. Env. Prot., 2, 161 (2013). https://doi.org/10.11648/j.ajep.20130206.17. DOI: https://doi.org/10.11648/j.ajep.20130206.17

W. Lei and S. Liu. J. Porous Mater., 19, 567 (2012). https:// doi.org/10.1007/s10934-011-9506-5. DOI: https://doi.org/10.1007/s10934-011-9506-5

M. Medjahdi, N. Benderdouche, B. Bestani, L. Duclaux and L. Reinert. Desalin. Water Treatment, 57, 22311 (2016). https://doi.org/10.1080/19443994.2015.1129511. DOI: https://doi.org/10.1080/19443994.2015.1129511

S. Xiaoying, Z. Xuebing, D. Wei and L. Dehua. Chin. J. Chemi. Eng., 19, 964 (2011). DOI: https://doi.org/10.1016/S1004-9541(11)60078-5

Y. H. Hu, Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop and D. Randall. J. Appl. Polym. Sci., 84, 591 (2002). https://doi.org/10.1002/app.10311. DOI: https://doi.org/10.1002/app.10311

A. G. Shirke, B. Z. Dholakiya and K. Kuperkar. J. Appl. Polym. Sci., 135, 45786 (2018). https://doi.org/10.1002/ app.45786. DOI: https://doi.org/10.1002/app.45786

M. Mosiewicki, M. I. Aranguren and J. Borrajo. J. Appl. Polym. Sci., 97, 825 (2005). https://doi.org/10.1002/ app.21790. DOI: https://doi.org/10.1002/app.21790

M. Mosiewicki, U. Casado, N. Marcovic and M. Aranguren. Mol. Cryst. Liq. Cryst., 484, 143/[509] (2008). https://doi.org/10.1080/15421400801904344. DOI: https://doi.org/10.1080/15421400801904344

M. Mosiewicki, G. Dell'Arciprete, M. Aranguren and N. Marcovich. J. Compos. Mater., 43, 3057 (2009). https:// doi.org/10.1177/0021998309345342. DOI: https://doi.org/10.1177/0021998309345342

R. Sanghi and B. Bhattacharya. Color. Technol., 118, 256 (2002). https://doi.org/10.1111/j.1478-4408.2002.tb00109.x. DOI: https://doi.org/10.1111/j.1478-4408.2002.tb00109.x

A. G. Shirke, B. Z. Dholakiya and K. Kuperkar. Polym. Sci. Ser. B., 57, 292 (2015). https://doi.org/10.1134/ S1560090415040132. DOI: https://doi.org/10.1134/S1560090415040132

C. Yang, U. Tartaglino and B. Persson. Phys. Rev. Lett., 97, 116103 (2006). https://doi.org/10.1103/ PhysRevLett.97.116103. PMid: 17025908.