Adverse Effect of Azo Food Colourants: A Toxicological Aspect


Affiliations

  • Dr. Harisingh Gour Vishwavidyalaya (A Central University), Department of Criminology and Forensic Science, Sagar, Madhya Pradesh, 470003, India

Abstract

Food colourants are important food additives which not only enhance the appearance of food, but also appetite and hold a very significant position in the food industry. These can be obtained from natural and synthetic sources, but synthetic sources are more popular, efficient and potential in its functional terms. Although food colourants don’t have any nutritional value, but their quantity and quality present in food materials imparts serious health risks. Earlier, studies reported that azo food colourants are injudiciously used in the food products and also developed suitable analytical methods for their detection in food materials. Further, evidences from various literatures suggested that food colourants which contains azo dyes are the causal factors for neurotoxicity, carcinogenicity, genotoxicity, hypersensitivity and therefore not safe for the human consumption. The present review article has been aimed to evaluate the toxicological profile of azo food colourants and associated adverse health impact. The findings of the study will add insightful facts to the literature and help the regulatory agencies to revisit and improve their toxicity testing procedures and exercise greater caution regarding continued approval of these dyes, and in the future approve only welltested and, safe dyes.

Keywords

Azo Dyes, Food Colourants, Hepatotoxicity, Neurotoxicity, Toxicity

Subject Discipline

Toxicology

Full Text:

References

de Boer L. Biotechnological production of colourants. Biotech Food Feed Addi. 2013: 51–89. https://doi.org/10.1007/10_2013_241.

Newsome AG, Culver CA, Van Breemen RB. Nature’s palette: the search for natural blue colourants. J Agric Food Chem. 2014; 62(28): 6498–511. https://doi.org/10.1021/jf501419q. PMid:24930897.

Li Y, Yang Y, Yin S, Zhou C, Ren D, Sun C. Inedible azo dyes and their analytical methods in food stuffs and beverages. J AOAC Int. 2018; 101(5): 1314–27. https://doi.org/10.5740/ jaoacint.18-0048. PMid:29669622.

Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colourants. Regul Toxicol Pharmacol. 2015; 73(3):914–22. https://doi.org/10.1016/j. yrtph.2015.09.026. PMid:26404013.

Duffus JH, Nordberg M, Templeton DM. Glossary of terms used in toxicology, (IUPAC Recommendations 2007). Pure Appl Chem. 2007; 79(7):1153–344. https://doi.org/10.1351/ pac200779071153.

Bhatt D, Vyas K, Singh S, John PJ, Soni I. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food Chem Toxicol. 2018; 113:322–7. https://doi.org/10.1016/j. fct.2018.02.011. PMid:29427609.

Ashok V, Agrawal N, Durgbanshi A, Esteve-Romero J, Bose D. A novel micellar chromatographic procedure for the determination of metanil yellow in foodstuffs. Anal Methods. 2015; 7(21):9324–30. https://doi.org/10.1039/ C5AY02377G.

Ashok V, Agrawal N, Durgbanshi A, Esteve-Romero J, Bose D. Determination of adulteration of malachite green in green pea and some prepared foodstuffs by micellar liquid chromatography. J AOAC Int. 2014; 97(5):1387–92. https:// doi.org/10.5740/jaoacint.13-285.PMid:25902988.

Ashok V, Agrawal N, Esteve-Romero J, Bose D, Dubey NP. Detection of methyl orange in saffron and other edibles using direct injection micellar liquid chromatography. Food Anal Methods. 2017; 10(1):269–76. https://doi. org/10.1007/s12161-016-0578-3.

Abe FR, Soares AM, de Oliveira DP, Gravato C. Toxicity of dyes to zebrafish at the biochemical level: cellular energy allocation and neurotoxicity. Environ Pollot. 2018; 235:255–62. https://doi.org/10.1016/j.envpol.2017.12.020. PMid:29291525.

Sampson HA. Food allergy: A winding road to the present. Pediatr Allergy Immunol. 2014; 25(1):25–26. https://doi. org/10.1111/pai.12202. PMid:24588484.

Feketea G, Tsabouri S. Common food colourants and allergic reactions in children: Myth or reality?. Food Chem. 2017; 230:578–88. https://doi.org/10.1016/j.foodchem. 2017.03.043. PMid:28407952.

Stevens LJ, Burgess JR, Stochelski MA, Kuczek T. Amounts of artificial food dyes and added sugars in foods and sweets commonly consumed by children. Clin Pediatr. 2015; 54(4):309–21. https://doi.org/10.1177/0009922814530803. PMid:24764054.

Burks AW, Tang M, Sicherer S, Muraro A, Eigenmann PA, Ebisawa M, et al. ICON: Food allergy. J Allergy and Clin Immunol. 2012; 129(4):906–20. https://doi.org/10.1016/j. jaci.2012.02.001. PMid:22365653.

Hammarstrom S. Leukotrienes. Annu Rev of Biochem. 1983; 52(1):355–77. https://doi.org/10.1146/annurev. bi.52.070183.002035. PMid:6311078.

Pollock I, Warner JO. A follow-up study of childhood food additive intolerance. J R Coll Physician Lond. 1987; 21(4):248..

Baumler W. Absorption, distribution, metabolism and excretion of tattoo colourants and ingredients in mouse and man: The known and the unknown. Curr Probl Dermatol. 2015; 48:176–84. https://doi.org/10.1159/000369222. PMid:25833641.

Rajan JP, Simon RA, Bosso JV. Prevalence of sensitivity to food and drug additives in patients with chronic idiopathic urticaria. J Allergy Clin Immunol: In Practice. 2014; 2(2):168–71. https://doi.org/10.1016/j.jaip.2013.10.002. PMid:24607044.

Vojdani A, Vojdani C. Immune reactivity to food colouring. Altern Ther. 2015; 21:1..

Leo L, Loong C, Ho XL, Raman MF, Suan MY, Loke WM. Occurrence of azo food dyes and their effects on cellular inflammatory responses. Nutrition. 2018; 46:36–40. https://doi.org/10.1016/j.nut.2017.08.010. PMid:29290353.

Carocho M, Barreiro MF, Morales P, Ferreira IC. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr Rev Food Sci Food Saf. 2014; 13(4):377–99. https://doi.org/10.1111/1541-4337.12065. PMid:33412697.

Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977; 31(1):107–33. https://doi. org/10.1146/annurev.mi.31.100177.000543. PMid:334036.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Sci. 2005; 308(5728):1635–8. https://doi.org/10.1126/ science.1110591. PMid:15831718. PMCid:PMC1395357.

Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. 1996; 38(3):365–75. https://doi.org/10.1136/gut.38.3.365. PMid:8675088. PMCid:PMC1383064.

Bik EM. Composition and function of the human-associated microbiota. Nutr Rev. 2009; 67(suppl_2):S164–71. https://doi.org/10.1111/j.1753-4887.2009.00237.x. PMid:19906220.

Han J, Antunes LC, Finlay BB, Borchers CH. Metabolomics: towards understanding host-microbe interactions. Future Microbiol. 2010; 5(2):153–61. https://doi.org/10.2217/ fmb.09.132. PMid:20143941.

Collier SW, Storm JE, Bronaugh RL. Reduction of azo dyes during in vitro percutaneous absorption. Toxicol Appl Pharmacol. 1993; 118(1):73–9. https://doi.org/10.1006/ taap.1993.1011. PMid:8430426.

Feng J, Cerniglia CE, Chen H. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite edition). 2012; 4:568. https://doi. org/10.2741/400. PMid:22201895.

Uter W, Stropp G, Schnuch A, Lessmann H. Aniline-A ‘Historical’Contact Allergen? Current Data from the IVDK and Review of the Literature. Ann Occup Hyg. 2007; 51(2):219–26. https://doi.org/10.1093/annhyg/mel076.

Yoshimi N, Sugie S, Iwata H, Niwa K, Mori H, Hashida C, et al. The genotoxicity of a variety of aniline derivatives in a DNA repair test with primary cultured rat hepatocytes. Mutat Res Gent Toxicol. 1988; 206(2):183–91. https://doi. org/10.1016/0165-1218(88)90159-0.

Mansour HB, Corroler D, Barillier D, Ghedira K, Chekir L, Mosrati R. Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: Acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food Chem Toxicol. 2007; 45(9):1670–7. https://doi.org/10.1016/j.fct.2007.02.033. PMid:17434654.

Pradhan SK, Singla R. Potential of thallophytes in degradation of dyes in industrial effluents. Microb Technol Heal Environ. 2020:327–59. https://doi.org/10.1007/978-981- 15-2679-4_13.

Yasunaga K, Kiyonari A, Nakagawa M, Yoshikawa K. Different results of the Salmonella umu test between three isomers of phenylenediamine (PDA) derivatives. Drug Chem Toxicol. 2006; 29(2):203–13. https://doi. org/10.1080/01480540600566766. PMid:16707328.

Anuradha S, Arora S, Mehrotra S, Arora A, Kar P. Acute renal failure following para?phenylenediamine (PPD) poisoning: A case report and review. Renal Fail. 2004; 26(3):329–32. https://doi.org/10.1081/JDI-200026722. PMid:15354985.

Xu H, Heinze TM, Paine DD, Cerniglia CE, Chen H. Sudan azo dyes and para red degradation by prevalent bacteria of the human gastrointestinal tract. Anaerobe. 2010; 16(2):114–9. https://doi.org/10.1016/j.anaerobe. 2009.06.007. PMid:19580882. PMCid:PMC5863247.

Pérez?Díaz IM, McFeeters RF. Modification of azo dyes by lactic acid bacteria. J Appl Microbiol. 2009; 107(2):584– 9. https://doi.org/10.1111/j.1365-2672.2009.04227.x. PMid:19302317.

Sharma UK, Kumar R, Gupta A, Ganguly R, Singh AK, Ojha AK, et al. Ameliorating efficacy of eugenol against metanil yellow induced toxicity in albino Wistar rats. Food Chem Toxicol. 2019; 126:34–40. https://doi.org/10.1016/j. fct.2019.01.032. PMid:30738991.

Fromenty B, Pessayre D. Inhibition of mitochondrial betaoxidation as a mechanism of hepatotoxicity. Pharmacol Ther. 1995; 67(1):101–54. https://doi.org/10.1016/0163- 7258(95)00012-6.

Labbe G, Pessayre D, Fromenty B. Drug?induced liver injury through mitochondrial dysfunction: Mechanisms and detection during preclinical safety studies. Fundam Clin Pharmacol. 2008; 22(4): 335–53. https://doi.org/10.1111/ j.1472-8206.2008.00608.x. PMid:18705745.

Sar?kaya R, Selvi M, Erkoç F. Evaluation of potential genotoxicity of five food dyes using the somatic mutation and recombination test. Chemosphere. 2012; 88(8):974–9. https://doi.org/10.1016/j.chemosphere.2012.03.032. PMid:22482698.

Amin KA, Hameid II HA, AbdElsttar AH. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol. 2010; 48(10):2994–9. https://doi.org/10.1016/j.fct.2010.07.039. PMid:20678534.

Ramchandani S, Das M, Joshi A, Khanna SK. Effect of oral and parenteral administration of metanil yellow on some hepatic and intestinal biochemical parameters. Int J Appl Toxicol. 1997; 17(1):85–91. https://doi.org/10.1002/(SICI)1099- 1263(199701)17:1<85::AID-JAT394>3.0.CO;2-K.

Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K, et al. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res Genet Toxicol Environ Mutagen. 2002; 519(1–2):103–19. https://doi.org/10.1016/S1383-5718(02)00128-6.

Gupta S, Sundarrajan M, Rao KV. Tumor promotion by metanil yellow and malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratog Carcinog Mutagen. 2003; 23(S1):301–12. https://doi.org/10.1002/tcm.10056. PMid:12616621.

Helal EG, Zaahkouk SA, Mekkawy HA. Effect of some food colourants (synthetic and natural products) of young albino rats. Egypt J Hosp Med. 2000; 1(1):103–13. https:// doi.org/10.21608/ejhm.2000.11021.

Giannini E, Botta F, Fasoli A, Ceppa P, Risso D, Lantieri PB, et al. Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig Dis Sci. 1999; 44(6):1249–53. https://doi.org/10.1023/A:1026609231094. PMid:10389705.

Cheng JC, Wu JK, Huang CM, Huang DY, Cheng SH, Lin YM, et al. Radiation-induced liver disease after radiotherapy for hepatocellular carcinoma: clinical manifestation and dosimetric description. Radiother Oncol. 2002; 63(1):41–5. https://doi.org/10.1016/S0167-8140(02)00061-0.

Abd-Elhakim YM, Moustafa GG, Hashem MM, Ali HA, Abo-EL-Sooud K, El-Metwally AE. Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenicsignalling pathway in liver and kidney of rats: The expression patterns of collagen 1-?, TGF?-1, fibronectin, and caspase-3 genes. Environ Sci Poll Res. 2019; 26(12):12368–78. https://doi.org/10.1007/s11356-019- 04734-w. PMid:30847814.

Abo-EL-Sooud K, Hashem MM, Badr YA, Eleiwa MM, Gab- Allaha AQ, Abd-Elhakim YM, Bahy-EL-Dien A. Assessment of hepato-renal damage and genotoxicity induced by longterm exposure to five permitted food additives in rats. Environ Sci Poll Res. 2018; 25(26):26341–50. https://doi. org/10.1007/s11356-018-2665-z. PMid:29981020.

Sharma S, Goyal RP, Chakravarty G, Sharma A. Toxicity of tomato red, a popular food dye blend on male albino mice. Exp Toxicol Pathol. 2008; 60(1):51–7. https://doi. org/10.1016/j.etp.2007.11.005. PMid:18222076.

Sahar SA S, Manal MEM S. The effects of using colour foods of children on immunity properties and liver, kidney on rats. Food and Nutr. Sci. 2012; 2012. .

Cemek M, Buyukokuroglu ME, Sertkaya F, Alpdagta? S, Hazini A, Onul A, et al. Effects of food colour additives on antioxidant functions and bioelement contents of liver, kidney and brain tissues in rats. J Food Nutr Res. 2014; 2(10):686–91. https://doi.org/10.12691/jfnr-2-10-6.

Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophysics Acta (BBA)-Gen Sub. 2014; 1840(4):1254–65. https://doi.org/10.1016/j.bbagen. 2013.10.041. PMid:24211250. PMCid:PMC3970188.

Qu D, Gu Y, Feng L, Han J. High content analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro. Food Chem. 2017; 233:135–43. https://doi. org/10.1016/j.foodchem.2017.04.102. PMid:28530558.

Culp SJ. NTP technical report on the toxicity studies of malachite green chloride and leucomalachite green (CAS Nos. 569-64-2 and 129-73-7) administered in feed to F344/N rats and B6C3F1 mice. Tox Rep Series. 2004; 1(71):1–F10. PMID: 15213768.

Atl ?ekeroglu Z, Gune? B, Konta? Yedier S, ?ekeroglu V, Ayd?n B. Effects of tartrazine on proliferation and genetic damage in human lymphocytes. Toxicol Mech Methods. 2017; 27(5):370–5. https://doi.org/10.1080/15376516.2017 .1296051. PMid:28264634.

Abd-Elhakim YM, Hashem MM, El-Metwally AE, Anwar A, Abo-EL-Sooud K, Moustafa GG, Ali HA. Comparative haemato-immunotoxic impacts of long-term exposure to tartrazine and chlorophyll in rats. Int Immunopharmacol. 2018; 63:145–54. https://doi.org/10.1016/j. intimp.2018.08.002. PMid:30096597.

Sweet LI, Zelikoff JT. Toxicology and immunotoxicology of mercury: A comparative review in fish and humans. J Toxicol Environ Heal Part B: Crit Rev. 2001; 4(2):161–205. https: //doi.org/10. 1080/109374001300339809. PMid:11341073.

Hashem MM, Atta AH, Arbid MS, Nada SA, Asaad GF. Immunological studies on Amaranth, Sunset Yellow and Curcumin as food colouring agents in albino rats. Food Chem Toxicol. 2010; 48(6):1581–6. https://doi. org/10.1016/j.fct.2010.03.028. PMid:20332010.

Guendouz MA, Mehedi NA, Zaoui CH, Saidi DJ, Khéroua OM. Immune response after tartrazinesubchronic ingestion in Swiss albino mice. Int J Pharm Pharmaceut. Sci. 2013; 5(2):584–92..

Yadav A, Kumar A, Dwivedi PD, Tripathi A, Das M. In vitro studies on immunotoxic potential of Orange II in splenocytes. Toxicol Lett. 2012; 208(3):239–45. https://doi. org/10.1016/j.toxlet.2011.11.014. PMid:22138556.

Yadav A, Kumar A, Tripathi A, Das M. Sunset yellow FCF, a permitted food dye, alters functional responses of splenocytes at non-cytotoxic dose. Toxicol Lett. 2013; 217(3):197–204. . https://doi.org/10.1016/j.toxlet. 2012.12.016. PMid:23287708.

Elbanna K, Sarhan OM, Khider M, Elmogy M, Abulreesh HH, Shaaban MR. Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. J Food Drug Anal. 2017; 25(3):667–80. https://doi. org/10.1016/j.jfda.2017.01.005. PMid:28911652.

Makhdoumi P, Hossini H, Ashraf GM, Limoee M. Molecular mechanism of aniline induced spleen toxicity and neuron toxicity in experimental rat exposure: a review. Curr Neuropharmacol. 2019; 17(3):201–13. https://doi.org/1 0.2174/1570159X16666180803164238. PMid:30081786. PMCid:PMC6425079.

El-Sakhawy MA, Mohamed DW, Ahmed YH. Histological and immunohistochemical evaluation of the effect of tartrazine on the cerebellum, submandibular glands, and kidneys of adult male albino rats. Environ Sci Poll Res. 2019; 26(10):9574–84. https://doi.org/10.1007/s11356-019- 04399-5. PMid:30726541.

Iheanyichukwu W, Adegoke AO, Adebayo OG, Emmanuel U M, Egelege AP, Gona JT, Orluwene FM. Combine Colourants of Tartrazine and Erythrosine induce kidney injury: Involvement of TNF-? gene, Caspase-9 and KIM-1 gene expression and kidney functions indices. Toxicol Mech Methods. 2021; 31(1):67–72. https://doi.org/10.1080/ 15376516.2020.1828523. PMid:32981412.

Bastaki M, Mendes OR, Bauter MR, Taylor SV. Assessment of FD&C Yellow No. 6 (Sunset Yellow FCF) effects on sperm count, motility and viability in the rat in a 28-day toxicity study. Regul Toxicol Pharmacol. 2019; 108:104479. https:// doi.org/10.1016/j.yrtph.2019.104479. PMid:31539566.

Mehedi N, Ainad-Tabet S, Mokrane N, Addou S, Zaoui C, Kheroua O, Saidi D. Reproductive toxicology of tartrazine (FD and C Yellow No. 5) in Swiss albino mice. Am J Pharmacol Toxicol. 2009; 4(4):130–5. https://doi. org/10.3844/ajptsp.2009.130.135.

Tanaka T. Reproductive and neurobehavioral effects of Sunset Yellow FCF administered to mice in the diet. Toxicol Ind Heal. 1996; 12(1):69–79. https://doi. org/10.1177/074823379601200104. PMid:8713715.

Tanaka T. Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem Toxicol. 2006; 44(2):179–87. https://doi.org/10.1016/j. fct.2005.06.011. PMid:16087284.

Tanaka T. Reproductive and neurobehavioural toxicity study of Ponceau 4R administered to mice in the diet. Food Chem Toxicol. 2006; 44(10):1651–8. https://doi.org/10.1016/j. fct.2006.05.001. PMid:16782257.

Tanaka T, Takahashi O, Oishi S, Ogata A. Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reprod Toxicol. 2008; 26(2):156–63. https:// doi.org/10.1016/j.reprotox.2008.07.001. PMid:18687399.

Tanaka T, Takahashi O, Inomata A, Ogata A, Nakae D. Reproductive and neurobehavioral effects of brilliant blue FCF in mice. Birth Def Res Part B: Develop Reprod Toxicol. 2012; 95(6):395–409. https://doi.org/10.1002/bdrb.21029. PMid:23208798.

Nath PP, Sarkar K, Mondal M, Paul G. Metanil yellow impairs the estrous cycle physiology and ovarian folliculogenesis in female rats. Environ Toxicol. 2016; 31(12):2057–67. https:// doi.org/10.1002/tox.22205. PMid:26494366.

Kmeti? I, Sr?ek VG, Slivac I, Šimi? B, Kniewald Z, Kniewald J. Atrazine exposure decreases cell proliferation in Chinese hamster ovary (CHO-K1) cell line. Bull Environ Contam Toxicol. 2008; 81(2):205–9. https://doi.org/10.1007/s00128- 008-9425-6. PMid:18465069.

Montaser M, Abiya RA, Afifi M, Saddick S, Allogmani AS, Almaghrabi OA. Effect of natural and synthetic food colourants on spermatogenesis and the expression of its controlling genes. Vet Med In-bet. Heal. Eco. 2018; 55..

Hashem MM, Abd-Elhakim YM, Abo-EL-Sooud K, Eleiwa MM. Embryotoxic and teratogenic effects of tartrazine in rats. Toxicol Res. 2019; 35(1):75–81. https:// doi.org/10.5487/TR.2019.35.1.075. PMid:30766659. PMCid:PMC6354951.

Doguc DK, Ceyhan BM, Ozturk M, Gultekin F. Effects of maternally exposed colouring food additives on cognitive performance in rats. Toxicol Ind Heal. 2013; 29(7):616–23. https://doi.org/10.1177/0748233712436638. PMid:22323474.

Arnold LE, Lofthouse N, Hurt E. Artificial food colours and attention-deficit/hyperactivity symptoms: Conclusions to dye for. Neurother. 2012; 9(3):599–609. https:// doi.org/10.1007/s13311-012-0133-x. PMid:22864801. PMCid:PMC3441937.

Gajda-Wyr?bek J, Ku?ma K, ?witka A, Jarecka J, Beresi?ska M, Postupolski J. Exposure of Polish children to Southampton food colours. Food Addit Contam: Part A. 2017; 34(1):1–9. https://doi.org/10.1080/19440049.2016.1 254819. PMid:27805864.

Mohamed AA, Galal AA, Elewa YH. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem. 2015; 117(7):649–58. https://doi.org/10.1016/j. acthis.2015.07.002. PMid:26190785.

Albasher G, Maashi N, Alfarraj S, Almeer R, Albrahim T, Alotibi F, et al. Perinatal exposure to tartrazine triggers oxidative stress and neurobehavioral alterations in mice offspring. Antioxidants. 2020; 9(1):53. https://doi.org/10.3390/ antiox9010053. PMid:31936188. PMCid:PMC7023231.

Lau K, McLean WG, Williams DP, Howard CV. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test. Toxicol Sci. 2006; 90(1):178–87. https://doi.org/10.1093/toxsci/kfj073. PMid:16352620.

Rafati A, Nourzei N, Karbalay-Doust S, Noorafshan A. Using vitamin E to prevent the impairment in behavioral test, cell loss and dendrite changes in medial prefrontal cortex induced by tartrazine in rats. Acta Histochem. 2017; 119(2):172–80. https://doi.org/10.1016/j. acthis.2017.01.004. PMid:28126192.

Erickson ZT, Falkenberg EA, Metz GA. Lifespan psychomotor behaviour profiles of multigenerational prenatal stress and artificial food dye effects in rats. PloS One. 2014; 9(6):e92132. https://doi.org/10.1371/journal. pone.0092132. PMid:24937660. PMCid:PMC4061018


Refbacks

  • There are currently no refbacks.