Chrysin Attenuates Chronic Unpredictable Mild Stress Induced Changes in Behavior, Inflammation and Improves Adrenergic, Serotonergic Function: An In-vivo and Biochemical Study

Jump To References Section

Authors

  • Department of Pharmacognosy and Phytochemistry, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Guntur – 522019, Andhra Pradesh ,IN
  • Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati – 517502, Andhra Pradesh, India ,IN
  • Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati – 517502, Andhra Pradesh ,IN
  • Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati – 517502, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/ti/2022/v29i3/29153

Keywords:

Anti-oxidant, Chrysin, Depression, Inflammation, CUMS
Pharmacological screening

Abstract

Chrysin (5,7-dihydroxyflavone) is a flavonoid with a vast number of pharmacological properties because of its antioxidant potential. Chronic stress is one of the predominant etiological factors which evoke molecular alterations in the brain leading to the development of depressive disorder. In the present study, we investigated the effect of Chrysin on Chronic Unpredictable Mild Stress (CUMS) induced alterations in behavior, noradrenergic as well as serotonergic function, and inflammation in brain. Randomly, mice were divided into four groups of six animals in each group. On 28th day after assessing behavioral parameters, brain biochemical markers were assessed. From the results, it is concluded that the chrysin protects the brain cells from CUMS induced molecular changes by attenuation of inflammation and oxidative stress.

Downloads

Download data is not yet available.

Published

2022-12-12

How to Cite

Pendyala, V., Thakur, S. R., Yadikar, L., & Chinta, M. D. (2022). Chrysin Attenuates Chronic Unpredictable Mild Stress Induced Changes in Behavior, Inflammation and Improves Adrenergic, Serotonergic Function: An <i>In-vivo</i> and Biochemical Study. Toxicology International, 29(3), 393–403. https://doi.org/10.18311/ti/2022/v29i3/29153

Issue

Section

Research Articles
Received 2021-12-17
Accepted 2022-03-19
Published 2022-12-12

 

References

Hirokawa S, Kawakami N, Matsumoto T, Inagaki A, Eguchi N, Tsuchiya M, et al. Mental disorders and suicide in Japan: A nation-wide psychological autopsy case-control study. J Affect Disord. 2012; 140(2):168–75. https://doi. org/10.1016/j.jad.2012.02.001. PMid:22391515 DOI: https://doi.org/10.1016/j.jad.2012.02.001

Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Primers. 2016; 2(1):1–20. https://doi.org/10.1038/nrdp.2016.65. PMid:27629598 DOI: https://doi.org/10.1038/nrdp.2016.65

World Health Organization. Depression [Internet]. 2017. [Cited on 2019 Apr 10]. Available from: http://www. who. int/mediacentre/factsheets/fs369/en.

Wilson E, Lader M. A review of the management of antidepressant discontinuation symptoms. Ther Adv Psycho Pharmacol. 2015; 5(6):357–68. https://doi. org/10.1177/2045125315612334. PMid:26834969. PMCid:PMC4722507 DOI: https://doi.org/10.1177/2045125315612334

Fava M, Rush AJ, Alpert JE, Balasubramani GK, Wisniewski SR, Carmin CN, et al. Difference in treatment outcome in outpatients with anxious versus nonanxious depression: A STAR* D report. Am J Psychiatry. 2008; 165(3):342– 51. https://doi.org/10.1176/appi.ajp.2007.06111868. PMid:18172020 DOI: https://doi.org/10.1176/appi.ajp.2007.06111868

Lee G, Bae H. Therapeutic effects of phytochemicals and medicinal herbs on depression. Bio Med Res Int. 2017. https://doi.org/10.1155/2017/6596241. PMid:28503571. PMCid:PMC5414506 DOI: https://doi.org/10.1155/2017/6596241

Li H, Lin S, Qin T, Li H, Ma Z, Ma S. Senegenin exerts anti-depression effect in mice induced by chronic unpredictable mild stress via inhibition of NF-κB regulating NLRP3 signal pathway. Int Immunopharmacol. 2017; 53:24–32. https://doi.org/10.1016/j.intimp.2017.10.001. PMid:29031144 DOI: https://doi.org/10.1016/j.intimp.2017.10.001

Zhang H, Zhou Z, Chen Z, Zhong Z, Li Z. Ginsenoside Rg3 exerts anti-depressive effect on an NMDA treated cell model and a chronic mild stress animal model. J Pharmacol Sci. 2017; 134(1):45–54. ht tps://doi. org/10.1016/j. jphs.2017.03.007 . PMid:28461003 DOI: https://doi.org/10.1016/j.jphs.2017.03.007

Leonard BE. The concept of depression as a dysfunction of the immune system. In Depression: From Psychopathology to Pharmacotherapy Karger Publishers. 2010; 27:53–71. https://doi.org/10.1159/000319504 DOI: https://doi.org/10.1159/000319504

Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016; 16(1):22–34. https://doi.org/10.1038/nri.2015.5. PMid:26711676. PMCid:PMC5542678 DOI: https://doi.org/10.1038/nri.2015.5

Wang GL, Wang YP, Zheng JY, Zhang LX. Monoaminergic and aminoacidergic receptors are involved in the antidepressant- like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex. Brain Res. 2018; 1699:44–53. https://doi.org/10.1016/j. brainres.2018.05.035. PMid:29802841 DOI: https://doi.org/10.1016/j.brainres.2018.05.035

Barbarić M, Mišković K, Bojić M, Lončar MB, Smolčić- Bubalo A, Debeljak Ž, Medić-Šarić M. Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells. Journal Ethno Pharmacol. 2011; 135(3):772–8. https://doi.org/10.1016/j.jep.2011.04.015. PMid:21515353 DOI: https://doi.org/10.1016/j.jep.2011.04.015

Bae Y, Lee S, Kim SH. Chrysin suppresses mast cellmediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol App Pharmacol. 2011; 254(1):56–64. https://doi. org/10.1016/j.taap.2011.04.008. PMid:21515303 DOI: https://doi.org/10.1016/j.taap.2011.04.008

Zeng W, Yan Y, Zhang F, Zhang C, Liang W. Chrysin promotes osterogenic differentiation via ERK/ MAPK activation. Protein & cell. 2013; 4(7):539– 47. https://doi.org/10.1007/s13238-013-3003-3. PMid:23744338. PMCid:PMC4875509 DOI: https://doi.org/10.1007/s13238-013-3003-3

Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, et al. Neuroprotective effects of chrysin: From chemistry to medicine. Neuro Chem Int. 2015; 90:224–31. https://doi.org/10.1016/j.neuint.2015.09.006. PMid:26386393 DOI: https://doi.org/10.1016/j.neuint.2015.09.006

Schweizer MC, Henniger MS, Sillaber I. Chronic Mild Stress (CMS) in mice: of anhedonia, ‘anomalous anxiolysis’ and activity. PloS one. 2009; 4(1). https://doi. org/10.1371/journal.pone.0004326. PMid:19177164. PMCid:PMC2627902 DOI: https://doi.org/10.1371/journal.pone.0004326

Porsolt RD, Bertin A, Jalfre MJ. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int Pharmacodyn Ther. 1977; 229(2):327–36.

Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psycho Pharmacol. 1985; 85(3):367–70. https:// doi.org/10.1007/BF00428203. PMid:3923523 DOI: https://doi.org/10.1007/BF00428203

Dhingra D, Goyal PK. Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of Tinospora cordifolia in mice. Indian J Pharm Sci. 2008; 70(6):761. ht tp s : / / d oi . o rg/10.4103/0250-474X.49118. PMid:21369437. PMCid:PMC3040870 DOI: https://doi.org/10.4103/0250-474X.49118

Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci Bio Behav Rev. 1992; 16(4):525–34. https://doi. org/10.1016/S0149-7634(05)80194-0 DOI: https://doi.org/10.1016/S0149-7634(05)80194-0

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351–8. https://doi. org/10.1016/0003-2697(79)90738-3 DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Ellman GL, Tissue sulphydryl groups. Arch Biochem Biophys. 1959; 82:70. https://doi.org/10.1016/0003- 9861(59)90090-6 DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Mullane KM, Kraemer R, Smith B. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemie myocardium. J Pharmacol Methods. 1985;14(3):157–67. https://doi.org/10.1016/0160-5402(85)90029-4 DOI: https://doi.org/10.1016/0160-5402(85)90029-4

Schlumpf M, Lichtensteiger W, Langemann H, Waser PG, Hefti F. A fluorometric micro method for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue. Biochem Pharmacol. 1974; 23(17):2437–46. https://doi. org/10.1016/0006-2952(74)90235-4 DOI: https://doi.org/10.1016/0006-2952(74)90235-4

Zhou SM, Guan SY, Yang L, Yang LK, Wang L, Nie HF, et al. Cucurbitacin IIa exerts antidepressant-like effects on mice exposed to chronic unpredictable mild stress. Neuro Report. 2017; 28(5):259–67. https://doi.org/10.1097/ WNR.0000000000000747. PMid:28240721 DOI: https://doi.org/10.1097/WNR.0000000000000747

Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, et al. Neuronal nitric oxide synthase contributes to chronic stress induced depression by suppressing hippocampal neurogenesis. J Neuro Chem. 2007; 103(5):1843–54. https://doi.org/10.1111/j.1471-4159.2007.04914.x. PMid:17854383 DOI: https://doi.org/10.1111/j.1471-4159.2007.04914.x

Yi LT, Xu Q, Li YC, Yang L, Kong LD. Antidepressantlike synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice. Prog Neuropsycho Pharmacol Biol Psychiatry. 2009; 33(4):616–24. https://doi.org/10.1016/j. pnpbp.2009.03.001. PMid:19285110 DOI: https://doi.org/10.1016/j.pnpbp.2009.03.001

Mehta V, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway. Physiology & Behavior. 2017; 182:10–6. https://doi.org/10.1016/j. physbeh.2017.09.019. PMid:28939429 DOI: https://doi.org/10.1016/j.physbeh.2017.09.019

Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009; 92(1):39–43. https://doi. org/10.1016/j.pbb.2008.10.007. PMid:19000708 DOI: https://doi.org/10.1016/j.pbb.2008.10.007

Xue J, Li H, Deng X, Ma Z, Fu Q, Ma S. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome- mediated inflammatory cytokines and central neurotransmitters. PharmacolBiochemBehav. 2015; 134:42–8. ht tp s : / / d oi . org/10.1016/j. pbb.2015.04.014 . PMid:25937574 DOI: https://doi.org/10.1016/j.pbb.2015.04.014

Cryan JF, Slattery DA. Animal models of mood disorders: recent developments. Curr Opinion in Psychiatry. 2007; 20(1):1–7. https://doi.org/10.1097/ YCO.0b013e3280117733. PMid:17143074 DOI: https://doi.org/10.1097/YCO.0b013e3280117733

Kumar B, Kuhad A, Chopra K. Neuro psychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacol. 2011; 214(4):819–28. https://doi.org/10.1007/s00213-010- 2094-2. PMid:21103863 DOI: https://doi.org/10.1007/s00213-010-2094-2

Jia HM, Li Q, Zhou C, Yu M, Yang Y, Zhang HW, et al. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression. Scientific Rep. 2016; 6(1):1. https://doi.org/10.1038/srep23441. PMid:27006086. PMCid:PMC4804211 DOI: https://doi.org/10.1038/srep23441

Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuropsycho Pharmacol Biol Psychiatry. 2011; 35(3):676–92. https://doi.org/10.1016/j. pnpbp.2010.05.004. PMid:20471444 DOI: https://doi.org/10.1016/j.pnpbp.2010.05.004

Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008; 11(6):851–76. https://doi.org/10.1017/ S1461145707008401. PMid:18205981

Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol: Clinical and Experimental. 2007; 22(2):67–73. https://doi.org/10.1002/hup.829. PMid:17299810 DOI: https://doi.org/10.1002/hup.829

Zafir A, Ara A, Banu N. In vivo antioxidant status: A putative target of antidepressant action. Prog Neuropsycho Pharmacol Biol Psychiatry. 2009; 33(2):220–8. https://doi. org/10.1016/j.pnpbp.2008.11.010. PMid:19059298 DOI: https://doi.org/10.1016/j.pnpbp.2008.11.010

Mehta V, Malairaman U. Flavonoids: Prospective strategy for the management of diabetes and its associated complications. In Handbook of Research on Advancing Health Education through Technology IGI Global; 2016. p. 286–328. https://doi.org/10.4018/978-1-4666-9494-1. ch013. PMid:27126804. PMCid:PMC4909549 DOI: https://doi.org/10.4018/978-1-4666-9494-1.ch013

Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: The potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 2003; 8(6):365–70. https://doi.org/10.1179/135100003225003393. PMid:14980069 DOI: https://doi.org/10.1179/135100003225003393

Hritcu L, Ionita R, Postu PA, Gupta GK, Turkez H, Lima TC, et al. Antidepressant flavonoids and their relationship with oxidative stress. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/5762172. PMid:29410733. PMCid:PMC5749298 DOI: https://doi.org/10.1155/2017/5762172

Talarowska M, Bobińska K, Zajączkowska M, Su KP, Maes M, Gałecki P. Impact of oxidative/nitrosative stress and inflammation on cognitive functions in patients with recurrent depressive disorders. Medi Sci Mon. 2014; 20:110. https://doi.org/10.12659/MSM.889853. PMid:24457625. PMCid:PMC3907532 DOI: https://doi.org/10.12659/MSM.889853

Gałecki P, Gałecka E, Maes M, Chamielec M, Orzechowska A, Bobińska K, et al. The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Dis. 2012; 138(3):360–6. https://doi.org/10.1016/j.jad.2012.01.016. PMid:22331023 DOI: https://doi.org/10.1016/j.jad.2012.01.016

Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: Inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates-Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012; 20(3):127–50. https://doi.org/10.1007/s10787-011- 0111-7. PMid:22271002 DOI: https://doi.org/10.1007/s10787-011-0111-7

Dolati K, Rakhshandeh H, Shafei MN. Evaluation of antidepressant effect of ethanolic extract ofrosa damascena using forced swimming test. Avicenna J Phytomed. 2011; 2:46.

Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010; 67(5):446– 57. https://doi.org/10.1016/j.biopsych.2009.09.033. DOI: https://doi.org/10.1016/j.biopsych.2009.09.033

PMid:20015486 46. Brebner K, Hayley S, Zacharko R, Merali Z, Anisman H. Synergistic effects of interleukin-1β, interleukin-6, and tumor necrosis factor-α: Central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacol. 2000; 22(6):566–80. https://doi.org/10.1016/S0893- 133X(99)00166-9 DOI: https://doi.org/10.1016/S0893-133X(99)00166-9

Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacol. 2006; 31(10):2121–31. https:// doi.org/10.1038/sj.npp.1301029. PMid:16452991 DOI: https://doi.org/10.1038/sj.npp.1301029

You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q, Zuo R, et al. Pro-and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res. 2011; 225(1):135–41. https://doi.org/10.1016/j. bbr.2011.07.006. PMid:21767575 DOI: https://doi.org/10.1016/j.bbr.2011.07.006

Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016; 296:318–25. https://doi.org/10.1016/j. bbr.2015.09.031. PMid:26416673 DOI: https://doi.org/10.1016/j.bbr.2015.09.031

Holmes A, Murphy DL, Crawley JN. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry. 2003; 54(10):953–9. https://doi.org/10.1016/j. biopsych.2003.09.003. PMid:14625137 DOI: https://doi.org/10.1016/j.biopsych.2003.09.003

Gesto M, Soengas JL, Míguez JM. Acute and prolonged stress responses of brain monoaminergic activity and plasma cortisol levels in rainbow trout are modified by PAHs (naphthalene, β-naphthoflavone and benzo (a) pyrene) treatment. Aquat Toxicol. 2008; 86(3):341–

https://doi.org/10.1016/j.aquatox.2007.11.014. PMid:18180048 DOI: https://doi.org/10.1016/j.aquatox.2007.11.014

Dang H, Sun L, Liu X, Peng B, Wang Q, Jia W, et al. Preventive action of Kai Xin San aqueous extract on depressive-like symptoms and cognition deficit induced by chronic mild stress. Exp Biol Med. 2009; 234(7):785–93. https://doi.org/10.3181/0812-RM-354. PMid:19429857 DOI: https://doi.org/10.3181/0812-RM-354