Nanocurcumin Restores Arsenic-Induced Disturbances in Neuropharmacological Activities in Wistar Rats
DOI:
https://doi.org/10.18311/ti/2022/v29i3/30342Keywords:
Arsenic, Redox home ostasis, Neuropharmacology, Nano curcumin, Wistar ratsAbstract
The present study was carried out to examine the ameliorative potential of nanocurcumin against arsenic induced (sub-chronic) alterations in central nervous system in male Wistar rats. Nanocurcumin was synthesised and the hydrodynamic diameter, zeta potential and particle size were~76.60 nm, (-) 30 mV and 95nm, respectively. Experimental rats sub-chronically exposed to sodium (meta) arsenite (As; 10 mg.kg-1; 70 days; p.o) induced significant (p<0.05) reduction in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and favoured free radical generation and induced lipid peroxidation in brain tissue. The exposure resulted in significant (p<0.05) decrease in voluntary- and involuntary motor activities and enhanced anxiety levels. However, experimental rats receiving nanocurcumin (15 mg.kg-1; p.o) showed significant (p<0.05) recovery in enzymatic - and non-enzymatic antioxidant defence system and restoration of redox balance and overcome arsenic induced depression in motor activities and elevated anxiety levels. Further, Arsenic induced elevation in pro-inflammatory cytokines, cyclooxygenase-2 activity and prostaglandin-E2 in brain and angiotensin-II levels (plasma) was significantly (p<0.05) ameliorated by nanocurcumin. Additionally, quantitative real -time polymerase chain reaction revealed a fivefold decrease in Nox2 expression in brain following nanocurcumin administration. Thus, the study concludes that nanocurcumin can serve as a potential therapeutic candidate to counter arsenic induced redox imbalance and neuropharmacological disturbances and there exists a vast scope to exploit its utility after appropriate clinical modelling.
Downloads
References
Valko M, Jomova K, Christopher JR, Kamil K, Kamil M. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016; 90(1):1–37. https://doi.org/10.1007/s00204-015- 1579-5. PMid:26343967 DOI: https://doi.org/10.1007/s00204-015-1579-5
Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. Sources and consequences of groundwater contamination. Arch Environ Contam Toxicol. 2021; 80(1):1–10. https:// doi.org/10.1007/s00244-020-00805-z. PMid:33386943. PMCid:PMC7778406 DOI: https://doi.org/10.1007/s00244-020-00805-z
Tchounwou PB, Patlolla AK, Centeno JA. Carcinogenic and systemic health effects associated with arsenic exposure a critical review. Toxicol Pathol. 2003; 31:575–88. https://doi. org/10.1080/01926230390242007. PMid:14585726 DOI: https://doi.org/10.1080/01926230390242007
Bruce AF, Selene CH, Robert JC, Dexter LJ, Sullivan Jr W and Chen CJ. Handbook on the toxicology of metals (4th Edn), Academic Press 2015; 581–624. https://doi. org/10.1016/B978-0-444-59453-2.00028-7
Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: The implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol. 2006; 36:99–133. https://doi. org/10.1080/10408440500534230. PMid:16736939 DOI: https://doi.org/10.1080/10408440500534230
Lindgren A, Danielsson BR, Dencker L, Vahter M. Embryotoxicity of arsenite and arsenate: Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro. Acta Pharmacol et Toxicol. 1984; 54:311– 20. https://doi.org/10.1111/j.1600-0773.1984.tb01936.x. PMid:6730986 DOI: https://doi.org/10.1111/j.1600-0773.1984.tb01936.x
Bergquist ER, Fischer RJ, Sugden KD and Martin BD (2009) Inhibition by methylated organoarsenicals of the respiratory 2-oxoacid dehydrogenases. J Organomet Chem. 2009; 694:973–80. https://doi. org/10.1016/j.jorganchem.2008.12.028. PMid:20161290. PMCid:PMC2685281 DOI: https://doi.org/10.1016/j.jorganchem.2008.12.028
Chen YC, Lin-Shiau SY, Lin JK. Involvement of reactive oxygen species and caspase 3 activation in arsenite induced apoptosis. J Cell Physiol. 1998; 177:324–33. https://doi. org/10.1002/(SICI)1097-4652(199811)177:2<324::AIDJCP14> 3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1097-4652(199811)177:2<324::AID-JCP14>3.0.CO;2-9
Nordenson I, Beckman L. Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Heredity. 1991; 41:71–3. https://doi.org/10.1159/000153979. PMid:2050385 DOI: https://doi.org/10.1159/000153979
Styblo M, Serves SV, Cullen WR, Thomas DJ. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol. 1997; 10:27–33. https://doi.org/10.1021/tx960139g. PMid:9074799 DOI: https://doi.org/10.1021/tx960139g
Chouchane S, Snow ET. In vitro effect of arsenical compounds on glutathione-related enzymes. Chem Res Toxicol.. 2001; 14:517–22. https://doi.org/10.1021/ tx000123x. PMid:11368549 DOI: https://doi.org/10.1021/tx000123x
O’Bryant SE, Melissa E, Chloe VM, Gordon G, Robert B. Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a project frontier study. Int J Environ Res. 2011; 8:861–74. https:// doi.org/10.3390/ijerph8030861. PMid:21556183. PMCid: PMC3083674 DOI: https://doi.org/10.3390/ijerph8030861
Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vaskenaposhian H Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol. 2000; 163:203–17. https://doi. org/10.1006/taap.1999.8872. PMid:10698679 DOI: https://doi.org/10.1006/taap.1999.8872
Rodriguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M. Effects of sodium arsenite exposure on development and behaviour in the rat. Neurotoxicol Teratol. 2002; 24:743–50. https://doi.org/10.1016/S0892- 0362(02)00313-6 DOI: https://doi.org/10.1016/S0892-0362(02)00313-6
Ince S, Kucukkurt I, Acaroz U, Arslan-Acaroz D, Varol N. Boron ameliorates arsenic-induced DNA damage, proinflammatory cytokine gene expressions, oxidant/ antioxidant status, and biochemical parameters in rats. J Biochem Mol Toxicol. 2019; 33(2):222–52. https://doi. org/10.1002/jbt.22252. PMid:30368975 DOI: https://doi.org/10.1002/jbt.22252
Vijayakaran K, Kannan K, Kesavan M, Suresh S, Sankar P, Tandan SK, Sarkar SN. Arsenic reduces the antipyretic activity of paracetamol in rats: Modulation of brain COX-2 activity and CB1 receptor expression. Environ Toxicol Pharmacol. 2014; 37(1):438–47. https://doi.org/10.1016/j. etap.2013.12.015. PMid:24448467 DOI: https://doi.org/10.1016/j.etap.2013.12.015
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013; 15(1):195–218. https://doi.org/10.1208/s12248-012-9432-8 PMid:23143785. PMCid:PMC3535097 DOI: https://doi.org/10.1208/s12248-012-9432-8
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcuminnano formulations. American Asso Pharmaceu Scientists. 2015; 17(6):1341–56. https:// doi.org/10.1208/s12248-015-9811-z. PMid:26335307 . PMCid:PMC4627456 DOI: https://doi.org/10.1208/s12248-015-9811-z
Priyadarsini KI. Photophysics photochemistry and photobiology of curcumin: Studies from organic solutions bio-mimetics and living cells. J Photochem Photobiol. 2009; 10:81–95. https://doi.org/10.1016/j. jphotochemrev.2009.05.001 DOI: https://doi.org/10.1016/j.jphotochemrev.2009.05.001
Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 1995; 94:79–83. https://doi. org/10.1016/0304-3835(95)03827-J DOI: https://doi.org/10.1016/0304-3835(95)03827-J
Kapoor S, Priyadarsini KI. Protection of radiation-induced protein damage by Curcumin. Biophys Chem. 2001; 92(1– 2):119–26. https://doi.org/10.1016/S0301-4622(01)00188-0 DOI: https://doi.org/10.1016/S0301-4622(01)00188-0
Mukherjee S, Roy M, Dey S, Bhattacharya RK. A mechanistic approach for modulation of arsenic toxicity in human lymphocytes by curcumin, an active constituent of medicinal herb Curcuma longa Linn. J Clin Biochem Nutr. 2007; 41:32–42. https://doi.org/10.3164/jcbn.2007005. PMid:18392098. PMCid:PMC2274986 DOI: https://doi.org/10.3164/jcbn.2007005
Tsai YM, Chien CF, Lin LC, Tsai TH. Curcumin and its nanoformulation: The kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm. 2011; 416:331–8. https://doi.org/10.1016/j. ijpharm.2011.06.030. PMid:21729743 DOI: https://doi.org/10.1016/j.ijpharm.2011.06.030
Young NA, Bruss MS, Gardner M, Willis WL, Mo X, Valiente GR, et al. Oral administration of nano-emulsion curcumin in mice suppresses inflammatory-induced NFkB signaling and macrophage migration. Plos One. 2014; 9. https:// doi.org/10.1371/journal.pone.0111559. PMid:25369140. PMCid:PMC4219720 DOI: https://doi.org/10.1371/journal.pone.0111559
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharmacol. 2007; 4:807–18. https://doi.org/10.1021/ mp700113r. PMid:17999464 DOI: https://doi.org/10.1021/mp700113r
Yang, CS, Sang S, Lambert JD, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res. 2008; 252(1):139–1351. https://doi.org/10.1002/mnfr.200700234. PMid:18551457 DOI: https://doi.org/10.1002/mnfr.200700234
Burgos-Moron E, Calderon-Montano JM, Salvador J, Robles A, Lopez-Lazaro M. The dark side of curcumin. Int J Cancer. 2010; 126(7):1771–5. https://doi.org/10.1002/ ijc.24967. PMid:19830693
Kushwah P, Yadav A, Flora SJS. Combinatorial drug delivery strategy employing nano-curcumin and nano-MiADMSA for the treatment of arsenic intoxication in mouse. Chem Biol Interact. 2018; 286:1–30. https://doi.org/10.1016/j. cbi.2018.03.006. PMid:29548727 DOI: https://doi.org/10.1016/j.cbi.2018.03.006
Kulkarni SK. Hand book of experimental pharmacology, 3rd edn. Vallabh Prakashan, Delhi; 1999. p. 117–118.
Dunham MW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc. 1957; 46(3): 208–9. https://doi.org/10.1002/jps.3030460322. PMid:13502156 DOI: https://doi.org/10.1002/jps.3030460322
Belovicova K, Bogi E, Csatlosova K, Dubovicky M. Animal tests for anxiety-like and depression-like behaviour in rats. Interdiscip Toxicol. 2017; 10(1):40–3. https://doi.org/10.1515/intox-2017-0006. PMid:30123035. PMCid:PMC6096862 DOI: https://doi.org/10.1515/intox-2017-0006
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–75. https://doi.org/10.1016/S0021- 9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res. 1998; 82:810–18. https://doi.org/10.1161/01.RES.82.7.810. PMid:9562441 DOI: https://doi.org/10.1161/01.RES.82.7.810
Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys. 1998; 35(3):184–8.
Aebi HE. Catalase. In: Bergmeyer HU, Bergmeyer J, Grabi M (eds) Methods of enzymatic analysis, vol III, 3rd edn. Verlag Chemie, Weinheim; 1983. p. 273–86. 36. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967; 70(1):158–69.
Goldberg DM, Spooner RJ. Glutathione. In: Method of enzymatic analysis. Bergmeyer, H. U, Bergmeyer J and Grabi M (eds) 3rd edn. Verlag Chemiepub, Weinheim; 1983. p. 258–65.
Sedlak J, Lindsay RH. Estimation of total, protein-bound and nonprotein bound sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4 DOI: https://doi.org/10.1016/0003-2697(68)90092-4
Paula FB, Gouvea CM, Alfredo PP, Salgado I. Protective action of a hexane crude extract of Pterodon emarginatus fruits against oxidative and nitrosative stress induced by acute exercise in rats. Complement Altern Med. 2005; 5:17–25. https://doi.org/10.1186/1472-6882-5-17. PMid:16107219. PMCid:PMC1192789 DOI: https://doi.org/10.1186/1472-6882-5-17
Gowda BR, Prakash N, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, et al. Effect of telmisartan on arsenic-induced (sub-chronic) perturbations in redox homeostasis, pro-inflammatory cascade and aortic dysfunction in Wistar rats. Biol Trace Elem Res. 2021.https://doi.org/10.1007/s12011-021-02804- 0. PMid:34339004 DOI: https://doi.org/10.1007/s12011-021-02804-0
Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011; 59(5):2056– https://doi.org/10.1021/jf104402t. PMid:21322563 DOI: https://doi.org/10.1021/jf104402t
Abirami M, Raja J, Mekala P, Visha P. Preparation and characterisation of nanocurcumin suspension. Int J Environ Sci Techn. 2018; 7(1):100–3.
Garcia-Chavez E, Jimenez I, Segura B, Del Razo LM. Lipid oxidative damage and distribution of inorganic arsenic and its metabolites in the rat nervous system after arsenite exposure: influence of alpha tocopherol supplementation. Neurotoxicol. 2006; 27:1024–31. https://doi.org/10.1016/j. neuro.2006.05.001. PMid:16797074 DOI: https://doi.org/10.1016/j.neuro.2006.05.001
Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, et al. Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol. 2009; 240(3):367–76. https://doi.org/10.1016/j.taap.2009.07.017. PMid:19631675 DOI: https://doi.org/10.1016/j.taap.2009.07.017
Nagaraja TN, Desiraju T. Regional alterations in the levels of brain biogenic amines, glutamate, GABA, and GAD activity due to chronic consumption of inorganic arsenic in developing and adult rats. Bull Environ Contam Toxicol. 1993; 50:100–7. https://doi.org/10.1007/BF00196547. PMid:8418922 DOI: https://doi.org/10.1007/BF00196547
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in depression: Potential mechanisms of action and current evidence–A narrative review. Front Psychiatry. 2020; 11. https://doi.org/10.3389/fpsyt.2020.572533. PMid:33329109. PMCid:PMC7728608 DOI: https://doi.org/10.3389/fpsyt.2020.572533
Bernstam L, Nriagu J. Molecular aspects of arsenic stress. J Toxicol Environ.Health Part B: Crit Rev. 2000; 3:293–322. https://doi.org/10.1080/109374000436355. PMid:11055208 DOI: https://doi.org/10.1080/109374000436355
Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species. Toxicol. 2000; 153:83–4. https://doi.org/10.1016/S0300-483X(00)00306-1 DOI: https://doi.org/10.1016/S0300-483X(00)00306-1
Travacio M, Polo JM, Liesuy S. Chromium (VI) induces oxidative stress in the mouse brain. Toxicol. 2000; 15:137– 46. https://doi.org/10.1016/S0300-483X(00)00254-7 DOI: https://doi.org/10.1016/S0300-483X(00)00254-7
Singh S, Rana SVS. Amelioration of arsenic toxicity by L-ascorbic acid in laboratory rat. J Environ Biol. 2007; 28:377–84. PMID: 17929753.
Santra A, Amitabha M, Das S, Charkaborty SL, Mazumder DG. Hepatic damage caused by chronic arsenic toxicity in experimental animals. Clin Toxicol. 2000; 38(4):395–405. https://doi.org/10.1081/CLT-100100949. PMid:10930056 DOI: https://doi.org/10.1081/CLT-100100949
Yadav A, Lomash V, Samim M, Flora SJ. Curcumin encapsulated in chitosan nanoparticles: A novel strategy for the treatment of arsenic toxicity. Chem Biol Interact. 2012; 199:49–61. https://doi.org/10.1016/j.cbi.2012.05.011. PMid:22704994 DOI: https://doi.org/10.1016/j.cbi.2012.05.011
Bhatt K, Flora SJS. Oral co-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats. Environ Toxicol Pharmacol. 2009; 28:140–6. https:// doi.org/10.1016/j.etap.2009.03.012. PMid:21783994 DOI: https://doi.org/10.1016/j.etap.2009.03.012
Agarwal R, Goel SK, Behari JR. Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol. 2010; 30:457–68. https://doi.org/10.1002/jat.1517. PMid:20229497 DOI: https://doi.org/10.1002/jat.1517
Ramanathan K, Shila S, Kumaran S, Panneerselvam C. Protective role of ascorbic acid and alpha-tocopherol on arsenic induced microsomal dysfunctions. Hum Exp Toxicol. 2003; 22:12936. https://doi. org/10.1191/0960327103ht329oa. PMid:12723893 DOI: https://doi.org/10.1191/0960327103ht329oa
Gupta R, Kannan GM, Sharma M, Flora SJS. Therapeutic effects of Moringaoleifera on arsenic induced toxicity in rats. Environ Toxicol Pharmacol. 2005; 20:456–64. https:// doi.org/10.1016/j.etap.2005.05.005. PMid:21783626 DOI: https://doi.org/10.1016/j.etap.2005.05.005
Aposhian HV, Aposhian MM. Newer developments in arsenic toxicity. J Am Coll Toxicol. 1989; 8:1297–305. https://doi.org/10.3109/10915818909009121 DOI: https://doi.org/10.3109/10915818909009121
Yadav A, Kushwaha P, Flora SJS. Nanocurcumin prevents oxidative stress induced following arsenic and fluoride co-exposure in rats. Def Life Sci J. 2016; 1(1):69–77. https://doi.org/10.14429/dlsj.1.10055 DOI: https://doi.org/10.14429/dlsj.1.10055
Wang TS, Shu YF, Liu YC, Jan KY, Huang H. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicol. 1997; 121:229–37. https://doi.org/10.1016/ S0300-483X(97)00071-1 DOI: https://doi.org/10.1016/S0300-483X(97)00071-1
Liu Z, Dou W, Zheng Y, Wen Q, Qin M, Wang X, et al. Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress. Mol Med Rep. 2016; 13(2):1717–24. https://doi.org/10.3892/ mmr.2015.4690. PMid:26676408 DOI: https://doi.org/10.3892/mmr.2015.4690
Dai W, Wang H, Fang J, Zhu Y, Zhou J, Wang X. Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signalling pathway. Brain Res Bull. 2018; 140:65–71. https://doi.org/10.1016/j. brainresbull.2018.03.020. PMid:29626606 DOI: https://doi.org/10.1016/j.brainresbull.2018.03.020
Ding J, Li J, Xue C, Wu K, Ouyang W, Zhang D, et al. Cyclooxygenase-2 induction by arsenite is through a nuclear factor of activated T-cell-dependent pathway and plays an antiapoptotic role in Beas-2B cells. J Biol Chem. 2006; 281(34):24405–13. https://doi.org/10.1074/jbc. M600751200. PMid:16809336 DOI: https://doi.org/10.1074/jbc.M600751200
Rahman I, Macnee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000; 28:1405–20. https://doi.org/10.1016/S0891-5849(00)00215-X DOI: https://doi.org/10.1016/S0891-5849(00)00215-X
Rahman I, Mulier B, Gilmour PS, Watchorn T, Donaldson K, Jeffery PK, MacNee W. Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-kappa B. Biochem Pharmacol. 2001; 62:787– 94. https://doi.org/10.1016/S0006-2952(01)00702-X DOI: https://doi.org/10.1016/S0006-2952(01)00702-X
Karin M, Delhase M. JNK or IKK, AP-1 or NF-kB, which are the targets for MEK kinase 1 action? Proc Natl Acad Sci. 1998; 95:9067–9. https://doi.org/10.1073/pnas.95.16.9067 PMid:9689033. PMCid:PMC33875 DOI: https://doi.org/10.1073/pnas.95.16.9067
Derochette S, Franck T, Mouithys-Mickalad A, Ceusters J, Debydupont G, Lejeune JP. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem Biol Interact. 2013; 206(2):186–93. https://doi.org/10.1016/j. cbi.2013.09.011. PMid:24060679 DOI: https://doi.org/10.1016/j.cbi.2013.09.011