Estimation of Median Lethal Concentration (LC50) of Pyrethroid and Carbamates Pesticides using the Nematode Caenorhabditis elegans to Predict Mammalian Acute Lethality (LD50)

Jump To References Section

Authors

  • Bioinformatics lab, Department of Zoology, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra - 282005, Uttar Pradesh ,IN
  • Bioinformatics lab, Department of Zoology, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra - 282005, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i3/31834

Keywords:

Carbamates, C. elegans, Median Lethal Concentration, Pyrethroids, Toxicity

Abstract

Present study was aimed to estimate the median lethal concentration of most extensively used pesticides, pyrethroid (transfluthrin and cyfluthrin) and carbamates’ pesticides (methiocarb and propoxur to deter pests, using a free-living nematode, Caenorhabditis elegans as model organism. The median Lethal Concentration (LC50) was calculated by Log-dose/ probit regression line method, and Worms showed 24-hours lethality at concentrations 37 mg/l, 61 mg/l, 63 mg/l, and 48 mg/l for transfluthrin, cyfluthrin and methiocarb, propoxur respectively on NGM. Structural and toxicidal differences may has been for Differences in the median lethal concentration. LD50 and LC50 values data was compare with mammalian oral LD50 and calculated LC50 using C. elegans respectively. C. elegans found to be the more convenient for generating LC50 values analogous to the mammals LD50 values. So, C. elegans has great promises in the area of toxicological research.

Downloads

Download data is not yet available.

Published

2023-09-20

How to Cite

Rana, K., & Gautam, P. (2023). Estimation of Median Lethal Concentration (LC<Sub>50</Sub>) of Pyrethroid and Carbamates Pesticides using the Nematode <i>Caenorhabditis elegans</i> to Predict Mammalian Acute Lethality (LD<Sub>50</Sub>). Toxicology International, 30(3), 383–389. https://doi.org/10.18311/ti/2023/v30i3/31834
Received 2022-10-30
Accepted 2023-03-24
Published 2023-09-20

 

References

Rana K, Saxena PN. Method of exploit of arsenic trioxide in Rattus norvegicus: An estimation based on brain biochemistry. International Journal of Neurobiology. 2020; 2(1):1-6.

Dimitriadi M, Hart AC. Neurodegenerative disorders: Insights from the nematode Caenorhabditis elegans. Neurobiol Dis. 2010; 40(1):4-11. https://doi.org/10.1016/j. nbd.2010.05.012 PMid:20493260 PMCid:PMC2926245 DOI: https://doi.org/10.1016/j.nbd.2010.05.012

Serrano-Saiz E, Poole RJ, Felton T, Zhang F, de La Cruz ED, Hobert O. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell. 2013; 155(3):659-73. https://doi.org/10.1016/j. cell.2013.09.052 PMid:24243022 PMCid:PMC3855022 DOI: https://doi.org/10.1016/j.cell.2013.09.052

Govindarajan D, Chatterjee C, Shakambari G, Varalakshmi P, Jayakumar K, Balasubramaniem A. Oxidative stress response, epigenetic and behavioral alterations in Caenorhabditis elegans exposed to organophosphorus pesticide quinalphos. Biocatal Agric Biotechnol. 2019; 17:702-9. https://doi.org/10.1016/j.bcab.2019.01.031 DOI: https://doi.org/10.1016/j.bcab.2019.01.031

Vergallo A, Giampietri L, Baldacci F. Oxidative stress assessment in alzheimer’s disease: A clinic setting study. American Journal of Alzheimer’s Disease and Other Dementiasr. 2018; 33(1):35-41. https://doi. org/10.1177/1533317517728352 PMid:28931301 DOI: https://doi.org/10.1177/1533317517728352

Yadav SS, Singh MK, Yadav RS. Organophosphates induced alzheimer’s disease : An epigenetic aspect. J Clin Epigenet. 2016; 2(1:2):1-8.

Yadav IC, Devi NL. Pesticides classification and its impact on human and environment. Environmental Science and Engg. 2017; 6:140-157.

Knight A. Animal experiments scrutinised: Systematic reviews demonstrate poor human clinical and toxicological utility. ALTEX. 2007; 24(4):320-5. https://doi.org/10.14573/ altex.2007.4.320 PMid:18288428 DOI: https://doi.org/10.14573/altex.2007.4.320

Brenner S. The genetics of Caenorhabditis elegans. Genetlcs. 1974; 77:71-94. https://doi.org/10.1093/genetics/77.1.71 PMid:4366476 PMCid:PMC1213120 DOI: https://doi.org/10.1093/genetics/77.1.71

Consortium TC Elegans S. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science. 1998; 282(5396):2012-2018. https://doi. org/10.1126/science.282.5396.2012 PMid:9851916 DOI: https://doi.org/10.1126/science.282.5396.2012

Kratsios P, Stolfi A, Levine M, Hobert O. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci. 2012; 15(2):205-14. https://doi.org/10.1038/nn.2989 PMid:22119902 PMCid:PMC3267877 DOI: https://doi.org/10.1038/nn.2989

Ruan QL, Ju JJ, Li YH, et al. Evaluation of pesticide toxicities with differing mechanisms using Caenorhabditis elegans. Journal of Toxicology and Environmental Health - Part A: Current Issues. 2009; 72(11-12):746-51. https://doi.org/10.1080/15287390902841532 PMid:19492238 DOI: https://doi.org/10.1080/15287390902841532

Dhawan R, Dusenbery DB, Williams PL. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A. 1999; 58(7):451-62. https://doi.org/10.1080/009841099157179 PMid:10616193 DOI: https://doi.org/10.1080/009841099157179

Jaafar INM, Ahmad SA, Yasid NA. Estimation of LC50 and its confidence interval for the effect of nanozero valent iron on the freshwater zooplankton species Daphnia magna. Journal of Environmental Microbiology and Toxicology. 2018; 6(2):25-8. https://doi.org/10.54987/ jemat.v6i2.440 DOI: https://doi.org/10.54987/jemat.v6i2.440

A KG, Altinterim B, Aksu O. Determination of lethal concentration ( LC 50 ) values of Cinnamomum zeylanicum hydrosol on carp fish. Iran J Fish Sci. 2013; 12(1):34-44.

Meyer D, Williams PL. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. Journal of Toxicology and Environmental Health - Part B. 2014; 17(Part B):284- 306. https://doi.org/10.1080/10937404.2014.933722 PMid: 25205216 DOI: https://doi.org/10.1080/10937404.2014.933722

Ruszkiewicz JA, Pinkas A, Miah MR, et al. C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol. 2018; 354(01):126-35. https://doi.org/10.1016/j. taap.2018.03.016 PMid:29550512 PMCid:PMC6087488 DOI: https://doi.org/10.1016/j.taap.2018.03.016

Ortiz de Ora L, Bess EN. Emergence of Caenorhabditis elegans as a model organism for dissecting the gut–brain axis. mSystems. 2021; 6(4). https://doi.org/10.1128/ mSystems.00755-21 PMid:34427498 PMCid:PMC8407351 DOI: https://doi.org/10.1128/mSystems.00755-21

van Pelt KM, Truttmann MC. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Transl Med Aging. 2020; 4:60-72. https://doi.org/10.1016/j.tma.2020.05.001 PMid:34327290 PMCid:PMC8317484 DOI: https://doi.org/10.1016/j.tma.2020.05.001

Singh K, Yadav S. Caenorhabditis elegans: A promising contrivance to study neurotoxicity and oxidative stress. Res J Biotechnol. 2021; 16(10):198-206. https://doi. org/10.25303/1610rjbt198206 DOI: https://doi.org/10.25303/1610rjbt198206

Bhusal TN, Pokhrel M, Thapa RB. Probit and logit analysis: Multiple observations over time at various concentrations of biopesticide. Journal of Agriculture and Forestry University. 2020; 4:43-52. https://doi.org/10.3126/jafu. v4i1.47026 DOI: https://doi.org/10.3126/jafu.v4i1.47026

Finney DJ. Probit Analysis. 2nd ed. Cambridge University Press; 1952. p. Xiv + 318. https://doi.org/10.1017/ S0020268100052938

Raj DrA. LD50/LC50 Probit Analysis Software. Published Online; 2019.

Williams PL, Dusenbery DB. Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol Ind Health. 1988; 4(4):469-78. https://doi.org/10.1177/074823378800400406 PMid:3188044 DOI: https://doi.org/10.1177/074823378800400406

Leelaja BC, Rajini PS. Biochemical and physiological responses in Caenorhabditis elegans exposed to sublethal concentrations of the organophosphorus insecticide, monocrotophos. Ecotoxicol Environ Saf. 2013; 94:8- 13. https://doi.org/10.1016/j.ecoenv.2013.04.015 PMid: 23683899 DOI: https://doi.org/10.1016/j.ecoenv.2013.04.015

Singh P, Tripathi MK, Yasir M, Ranjan A, Shrivastava R. Effects of carbamate pesticides intermediates on Escherichia coli membrane architecture: An in vitro and in silico approach. Environ Anal Health Toxicol. 2021; 36(3):e2021020. https://doi.org/10.5620/eaht.2021020 PMid:34428861 PMCid:PMC8598408 DOI: https://doi.org/10.5620/eaht.2021020

Viri V, Arveiler M, Lehnert T, Gijs MAM. An in vivo microfluidic study of bacterial load dynamics and absorption in the C. elegans intestine. Micromachines (Basel). 2021; 12(7). https://doi.org/10.3390/mi12070832 PMid:34357242 PMCid:PMC8304684 DOI: https://doi.org/10.3390/mi12070832

Hunt PR. The C . elegans model in toxicity testing. Journal of Applied Toxicology. 2017; 37:50-9. https://doi.org/10.1002/ jat.3357 PMid:27443595 PMCid:PMC5132335 DOI: https://doi.org/10.1002/jat.3357

Cole RD, Anderson GL, Williams PL. The nematode Caenorhabditis elegans as a model of organophosphateinduced mammalian neurotoxicity. Toxicol Appl Pharmacol. 2004; 194(3):248-56. https://doi.org/10.1016/j. taap.2003.09.013 PMid:14761681 DOI: https://doi.org/10.1016/j.taap.2003.09.013

Rajini PS, Melstrom P, Williams PL. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides. Journal of Toxicology and Environmental Health - Part A: Current Issues. 2008; 71(15):1043-50. https://doi.org/10.1080/15287390801989002 PMid: 18569613 DOI: https://doi.org/10.1080/15287390801989002