Characterization and Preclinical Toxicity Assessment of Intranasal Administration of Standardized Extract of Centella asiatica (L.) Urban Leaves (INDCA-NS) in Laboratory Rats

Jump To References Section

Authors

  • Department of Scientific Affairs, Indus Biotech Limited, Kondhwa, Pune - 411048, Maharashtra ,IN
  • Department of Scientific Affairs, Indus Biotech Limited, Kondhwa, Pune - 411048, Maharashtra ,IN
  • Department of Scientific Affairs, Indus Biotech Limited, Kondhwa, Pune - 411048, Maharashtra ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i3/32171

Keywords:

Acute Toxicity, Centella asiatica (L.) Urban Leaves, Intranasal, Subacute Toxicity, Total Triterpenoids

Abstract

The objective of the present work was to characterize and assess the intranasal toxicity of a solution of total triterpenoids - based standardized extract of Centella asiatica (L.) Urban leaves (INDCA-NS). The acute and 28-day repeated-dose toxicity of intranasal administrated INDCA-NS in Wistar rats was evaluated. For the acute intranasal toxicity study, a single dose of 100 μg/rat/day was administered to five male and female rats and observed for mortality and signs of toxicity for 14 days. In the subacute toxicity study, the INDCA-NS (10, 30, and 100 μg/rat/day) were intranasally administered to a separate group of five male and female rats for 28 days, followed by a 14-day reversal period for behavioral, biochemical, and histological parameters. The effect of subacute administration of INDCA-NS on the ability to smell in rats was evaluated by a buried food test. Treatment with INDCA-NS did not result in mortality or treatment-related adverse signs during single or 28-day repeated-dose administration. In addition, intranasal INDCA-NS did not affect the sense of smell, as observed in the buried food test. Intranasal NDCA-NS was found safe in rats with a Maximum Tolerated Dose (MTD) of more than 100 μg/rat/day and No-Observed Adverse Effect Level (NOAEL) of more than 100 μg/rat/day in male and female rats during acute and subacute intranasal toxicity study respectively.

Downloads

Download data is not yet available.

Published

2023-09-20

How to Cite

Thakurdesai, P., Nimse, S., & Deshpande, P. (2023). Characterization and Preclinical Toxicity Assessment of Intranasal Administration of Standardized Extract of <i>Centella asiatica</i> (L.) Urban Leaves (INDCA-NS) in Laboratory Rats. Toxicology International, 30(3), 391–407. https://doi.org/10.18311/ti/2023/v30i3/32171
Received 2022-12-14
Accepted 2023-03-24
Published 2023-09-20

 

References

Jamil SS, Nizami Q, Salam M. Centella asiatica (Linn.) Urban- A review. Indian J Nat Prod Resour. 2007; 6(2):158- 70.

Belwal T, Andola HC, Atanassova MS, Joshi B, Suyal R, Thakur S, et al. Chapter 3.22 - Gotu Kola (Centella asiatica). In: Nabavi SM, Silva AS, editors. Nonvitamin and Nonmineral Nutritional Supplements. London: Academic Press; 2019. p. 265-75. https://doi.org/10.1016/B978-0-12- 812491-8.00038-2 DOI: https://doi.org/10.1016/B978-0-12-812491-8.00038-2

Singh P, Singh J. Recruitment and competitive interaction between ramets and seedlings in a perennial medicinal herb, Centella asiatica. Basic Appl Ecol. 2002; 3(1):65-76. https://doi.org/10.1078/1439-1791-00085 DOI: https://doi.org/10.1078/1439-1791-00085

Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J Pharm Sci. 2010; 72(5):546-56. https://doi.org/10.4103/0250- 474X.78519 PMid:21694984 PMCid:PMC3116297 DOI: https://doi.org/10.4103/0250-474X.78519

Orhan IE. Centella asiatica (L.) Urban: From traditional medicine to modern medicine with neuroprotective potential. Evid Based Complementary Altern Med. 2012; 2012946259. https://doi.org/10.1155/2012/946259 PMid:22666298 PMCid:PMC3359802 DOI: https://doi.org/10.1155/2012/946259

Thakurdesai PA. Chapter 21 - Centella asiatica (Gotu kola) leaves: Potential in neuropsychiatric conditions. In: Ghosh D, editor. Nutraceuticals in Brain Health and Beyond. New York: Academic Press; 2021. p. 307-28. https://doi. org/10.1016/B978-0-12-820593-8.00021-5 DOI: https://doi.org/10.1016/B978-0-12-820593-8.00021-5

Jana U, Sur TK, Maity LN, Debnath PK, Bhattacharyya D. A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal Med Coll J. 2010; 12(1):8-11.

Sarris J, McIntyre E, Camfield DA. Plant-based medicines for anxiety disorders, Part 2: A review of clinical studies with supporting preclinical evidence. CNS Drugs. 2013; 27(4):301-19. https://doi.org/10.1007/s40263-013-0059-9 PMid:23653088 DOI: https://doi.org/10.1007/s40263-013-0059-9

Bradwejn J, Zhou Y, Koszycki D, Shlik J. A double-blind, placebo-controlled study on the effects of Gotu Kola (Centella asiatica) on acoustic startle response in healthy subjects. J Clin Psychopharmacol. 2000; 20(6):680-4. https://doi.org/10.1097/00004714-200012000-00015 PMid:11106141 DOI: https://doi.org/10.1097/00004714-200012000-00015

Aswar M, Yanna V, Aswar U, Thakurdesai P, Mohan V, editors. Asiaticoside (INDCA) ameliorates cognitive impairment in Chronic Mild Stress (CMS) model in Wistar rats [NEU-27]. 48th Annual Conference of Indian Pharmacological Society (IPSCON2015); 28-20 December, 2015; Saurashtra University, Rajkot, India.

Kalshetty P, Aswar U, Mohan V, Bodhankar SL, Arulmozhi S, Thakurdesai PA. Antidepressant effects of standardized extract of Centella asiatica L in olfactory bulbectomy model. Biomed Aging Pathol. 2012; 2(2):48-53. https://doi. org/10.1016/j.biomag.2012.03.005 DOI: https://doi.org/10.1016/j.biomag.2012.03.005

Chen Y, Han T, Rui Y, Yin M, Qin L, Zheng H. Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai. 2005; 28(6):492-6.

Engels G, Brinckmann J. Gotu Kola, Centella asiatica Family: Apiaceae. HerbalGram. 2011;1-5.

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: A review. Front Pharmacol. 2020; 11568032. https://doi.org/10.3389/fphar.2020.568032 PMid:33013406 PMCid:PMC7498642 DOI: https://doi.org/10.3389/fphar.2020.568032

Alexander A, Agrawal M, Chougule MB, Saraf S, Saraf S. Chapter 9 - Nose-to-brain drug delivery: An alternative approach for effective brain drug targeting. In: Shegokar R, editor. Nanopharmaceuticals. Amsterdam: Elsevier; 2020. p. 175-200. https://doi.org/10.1016/B978-0-12-817778- 5.00009-9 PMCid:PMC7266811 DOI: https://doi.org/10.1016/B978-0-12-817778-5.00009-9

Gao M, Shen X, Mao S. Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays. J Pharm Investig. 2020; 50(3):251-9. https://doi.org/10.1007/ s40005-020-00482-z DOI: https://doi.org/10.1007/s40005-020-00482-z

Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J Control Release. 2018; 27089-100. https://doi. org/10.1016/j.jconrel.2017.11.047 PMid:29199063

Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur J Pharm Biopharm. 2020; 14838-53. https://doi.org/10.1016/j.ejpb.2019.12.014 PMid:31926222 DOI: https://doi.org/10.1016/j.ejpb.2019.12.014

Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017; 268364-89. https://doi.org/10.1016/j. jconrel.2017.09.001 PMid:28887135

Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules. 2020; 25(8):1929. https://doi.org/10.3390/molecules25081929 PMid:32326318 PMCid:PMC7221820 DOI: https://doi.org/10.3390/molecules25081929

Bobade V, Bodhankar SL, Aswar U, Mohan V, Thakurdesai PA. Prophylactic effects of asiaticoside based standardized extract of Centella asiatica (L.) Urban leaves in experimental migraine: Involvement of 5HT1A/1B receptors. Chin J Nat Med. 2015; 13(4):274-82. https://doi.org/10.1016/S1875- 5364(15)30014-5 PMid:25908624 DOI: https://doi.org/10.1016/S1875-5364(15)30014-5

Farheen S, Bhalerao P, Aswar U, Thakurdesai PA, editors. Preclinical efficacy of intranasal administration of standardised extract of Centella asiatica leaves (INDCA) on Nitroglycerine (NTG) induced chronic migraine pain in laboratory animals [OEP11]. International Conference on Emerging Trends in Delivery of Phytoconstituents and Ethnopharmacology - Validation of Traditional Medicine -II; 29-30 Nov 2019; Pune: Society of Ethnopharmacology, Pune Chapter; 2019.

Shivshingwale G, Aswar U, Thakurdesai P, editors. Preclinical efficacy of intranasal INDCA on Chronic Unpredictable Mild Stress (CUMS) induced depression and cognitive deficit in laboratory rats. 51st Annual Conference of Indian Pharmacological Society (IPSCON-2019); 5-7 Dec 2019; Hyderabad, India: National Institute of Nutrition, Hyderabad, Telangana State, India; 2019.

Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: Routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011; 50(5):600-13.

OECD. Test no. 423: Acute oral toxicity - acute toxic class method. OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects. Paris: OECD Publishing; 2002.

OECD. Test no. 407: Repeated dose 28-day oral toxicity study in rodents. OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects. Paris: OECD Publishing; 1998. https://doi.org/10.1787/9789264070684-en DOI: https://doi.org/10.1787/9789264070684-en

Yang M, Crawley JN. Simple behavioral assessment of mouse olfaction. Current protocols in neuroscience. New York: John Wiley & Sons, Inc.; 2009. p. Unit-8.24. https:// doi.org/10.1002/0471142301.ns0824s48 PMid:19575474 PMCid:PMC2753229

Martins J, Brijesh S. Phytochemistry and pharmacology of anti-depressant medicinal plants: A review. Biomed Pharmacother. 2018;104343-65. https://doi.org/10.1016/j. biopha.2018.05.044 PMid:29778018

Wahbeh H, Senders A, Neuendorf R, Cayton J. Complementary and alternative medicine for posttraumatic stress disorder symptoms: A systematic review. Focus. 2018; 16(1):98-112. https://doi.org/10.1177/2156587214525403 PMid:24676593 PMCid:PMC4177524 DOI: https://doi.org/10.1176/appi.focus.16102

Trkulja V, Barić H. Current research on Complementary and Alternative Medicine (CAM) in the treatment of anxiety disorders: An evidence-based review. Adv Exp Med Biol. 2020415-49. https://doi.org/10.1007/978-981-32- 9705-0_22 PMid: 32002940

Lu LS. Pharmacological evaluation Citrus hystrix DC leaves ethanolic extracts rich in flavonoid content for its anti depressant activity in rat. Int J Biol Sci. 2021; 4(02):1-54.

Hadju V, Muis M, Citrakesumasari C, Sirajuddin S, Zulkifli A. The effect of Moringa oleifera leaves plus royal jelly supplement on cortisol hormone and stress levels on anemia of pregnant women in takalar regency. Journal La Lifesci. 2020; 1(3):30-6. https://doi.org/10.37899/journallalifesci. v1i3.189 DOI: https://doi.org/10.37899/journallalifesci.v1i3.189

Bhaskaran SK, Kannappan P, Muneeswari P, Madathil R. Toxicological evaluation of the repeated dose administration of the ethanolic extract of Azolla microphylla in Wistar albino rats. Toxicol Int. 202139-48.

Gorla US, Rao GK, Kulandaivelu U, Alavala RR, Panda SP, Kolakota R. Acute, sub-acute and genotoxicity assessment of Cocculus hirsutus hydroalcoholic leaf extract in Wistar rats. Toxicol Int. 2021; 28(2):177-86. DOI: https://doi.org/10.18311/ti/2021/v28i2/26814

Nagane RM, Desai KR, Barad IM, Patel MV, Rana JR, Sheth UV, et al. Evaluation of clastogenic potential of ethanolic extract of leaf of Couroupita guianensis using micronucleus test in mice. Toxicol Int. 2021; 187-98. DOI: https://doi.org/10.18311/ti/2021/v28i2/27433

Chen Y, Han T, Qin L, Rui Y, Zheng H. Effect of total triterpenes from Centella asiatica on the depression behavior and concentration of amino acid in forced swimming mice. Zhong Yao Cai. 2003; 26(12):870-3.

Wanasuntronwong A, Tantisira MH, Tantisira B, Watanabe H. Anxiolytic effects of standardized extract of Centella asiatica (ECa 233) after chronic immobilization stress in mice. J Ethnopharmacol. 2012; 143(2):579-85. https://doi. org/10.1016/j.jep.2012.07.010 PMid:22841896 DOI: https://doi.org/10.1016/j.jep.2012.07.010

Deshpande PO, Mohan V, Thakurdesai P. Preclinical safety assessment of standardized extract of Centella asiatica (L.) urban leaves. Toxicol Int. 2015; 22(1):10-20. https:// doi.org/10.4103/0971-6580.172251 PMid:26862255 PMCid:PMC4721154 DOI: https://doi.org/10.4103/0971-6580.172251

Liang X, Yan Ni H, Si Wei C, Wen Juan W, Xu N, Cui S, et al. Antidepressant-like effect of asiaticoside in mice. Pharmacol Biochem Behav. 2008; 89(3):444-9. https://doi. org/10.1016/j.pbb.2008.01.020 PMid:18325568 DOI: https://doi.org/10.1016/j.pbb.2008.01.020

Liu MR, Han T, Chen Y, Qin LP, Zheng HC, Rui YC. Effect of madecassoside on depression behavior of mice and activities of MAO in different brain regions of rats. Journal of Chinese Integrative Medicine. 2004; 2(6):440-4. https:// doi.org/10.3736/jcim20040611 PMid:15539023 DOI: https://doi.org/10.3736/jcim20040611

Chen SW, Wang WJ, Li WJ, Wang R, Li YL, Huang YN, et al. Anxiolytic-like effect of asiaticoside in mice. Pharmacol Biochem Behav. 2006; 85(2):339-44. https://doi. org/10.1016/j.pbb.2006.08.017 PMid:17059844 DOI: https://doi.org/10.1016/j.pbb.2006.08.017

Wijeweera P, Arnason J, Koszycki D, Merali Z. Evaluation of anxiolytic properties of Gotukola–(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 2006; 13(9-10):668-76. https://doi. org/10.1016/j.phymed.2006.01.011 PMid:16488124 DOI: https://doi.org/10.1016/j.phymed.2006.01.011

Wanasuntronwong A, Wanakhachornkrai O, Phongphanphanee P, Isa T, Tantisira B, Tantisira MH. Modulation of neuronal activity on intercalated neurons of amygdala might underlie anxiolytic activity of a standardized extract of Centella asiatica (ECA233). Evid Based Complementary Altern Med. 2018; 20183853147. https://doi.org/10.1155/2018/3853147 PMid:29849706 PMCid:PMC5941724 DOI: https://doi.org/10.1155/2018/3853147

Sengupta P. The laboratory rat: Relating its age with human’s. Int J Prev Med. 2013; 4(6):624.

Brown HJ, Batra PS, Eggerstedt M, Ganti A, Papagiannopoulos P, Tajudeen BA. The possibility of shortterm hypothalamic-pituitary-adrenal axis suppression with high-volume, high-dose nasal mometasone irrigation in postsurgical patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2022; 12(3):249-56. https://doi. org/10.1002/alr.22894 PMid:34569177 DOI: https://doi.org/10.1002/alr.22894

Kline GA, Symonds CJ, Holmes DT. Systemic absorption of intranasal corticosteroids may occur and can potentially affect the hypothalamic-pituitary-adrenal axis. CMAJ. 2021; 193(12):E426. https://doi.org/10.1503/cmaj.78162 PMid:33753368 PMCid:PMC8096389 DOI: https://doi.org/10.1503/cmaj.78162

Guilliams TG, Edwards L. Chronic stress and the HPA axis. Standard. 2010; 9(2):1-12. https://doi.org/10.1002/cphy. c150015 PMid:27065163 PMCid:PMC4867107 DOI: https://doi.org/10.1002/cphy

Juruena MF, Eror F, Cleare AJ, Young AH. The role of early life stress in HPA axis and anxiety. Adv Exp Med Biol. 2020141-53. https://doi.org/10.1007/978-981-32-9705-0_9 PMid:32002927 DOI: https://doi.org/10.1007/978-981-32-9705-0_9

Angelin B, Einarsson K, Hellström K, Leijd B. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J Lipid Res. 1978; 19(8):1017-24. https://doi.org/10.1016/S0022-2275(20)40685-6 PMid: 731123 DOI: https://doi.org/10.1016/S0022-2275(20)40685-6

Bateson M, Maclean D, Evans J, Bouchier I. Chenodeoxycholic acid therapy for hypertriglyceridaemia in men. Br J Clin Pharmacol. 1978; 5(3):249-54. https:// doi.org/10.1111/j.1365-2125.1978.tb01632.x PMid:656270 PMCid:PMC1429265 DOI: https://doi.org/10.1111/j.1365-2125.1978.tb01632.x

Herbert RA, Janardhan KS, Pandiri AR, Cesta MF, Miller RA. Chapter 22 - Nose, Larynx, and Trachea. In: Suttie AW, editor. Boorman’s Pathology of the Rat (Second Edition). Boston: Academic Press; 2018. p. 391-435. https://doi.org/10.1016/B978-0-12-391448-4.00022-8 PMCid:PMC7158185 DOI: https://doi.org/10.1016/B978-0-12-391448-4.00022-8

McInnes EF. Chapter 8 - Artifacts in histopathology. In: McInnes EF, Mann P, editors. Background Lesions in Laboratory Animals. Saint Louis: W.B. Saunders; 2012. p. 93-9. https://doi.org/10.1016/B978-0-7020-3519- 7.00008-5 DOI: https://doi.org/10.1016/B978-0-7020-3519-7.00008-5

Muganurmath CS, Curry AL, Schindzielorz AH. Causality assessment of olfactory and gustatory dysfunction associated with intranasal fluticasone propionate: Application of the bradford hill criteria. Adv Ther. 2018; 35(2):173-90. https://doi.org/10.1007/s12325-018-0665-5 PMid:29396682 PMCid:PMC5818548 DOI: https://doi.org/10.1007/s12325-018-0665-5

Cho SH. Clinical diagnosis and treatment of olfactory dysfunction. Hanyang Med Rev. 2014; 34(3):107-15. https://doi.org/10.7599/hmr.2014.34.3.107 DOI: https://doi.org/10.7599/hmr.2014.34.3.107

Doty RL, Bromley SM. Effects of drugs on olfaction and taste. Otolaryngol Clin North Am. 2004; 37(6):1229- 54. https://doi.org/10.1016/j.otc.2004.05.002 PMid:15563912 DOI: https://doi.org/10.1016/j.otc.2004.05.002

Alexander TH, Davidson TM. Intranasal zinc and anosmia: The zinc‐induced anosmia syndrome. Laryngoscope. 2006; 116(2):217-20. https://doi.org/10.1097/01. mlg.0000191549.17796.13 PMid:16467707 DOI: https://doi.org/10.1097/01.mlg.0000191549.17796.13

Tuccori M, Lapi F, Testi A, Ruggiero E, Moretti U, Vannacci A, et al. Drug-induced taste and smell alterations. Drug Saf. 2011; 34(10):849-59. https://doi.org/10.2165/11593120- 000000000-00000 PMid:21879779 DOI: https://doi.org/10.2165/11593120-000000000-00000

Wallace DG, Gorny B, Whishaw IQ. Rats can track odors, other rats, and themselves: Implications for the study of spatial behavior. Behav Brain Res. 2002; 131(1):185- 92. https://doi.org/10.1016/S0166-4328(01)00384-9 PMid:11844585 DOI: https://doi.org/10.1016/S0166-4328(01)00384-9

Machado CF, Reis-Silva TM, Lyra CS, Felicio LF, Malnic B. Buried food-seeking test for the assessment of olfactory detection in mice. Bio-protocol. 2018; 8(12):e2897. https:// doi.org/10.21769/BioProtoc.2897 DOI: https://doi.org/10.21769/BioProtoc.2897

Aswar U, Kalshetty P, Thakurdesai PA, Mohan V, editors. Evaluation of standardized extract of Centella asciatica leaves on suicidal behavior related traits in laboratory rats. 46th Annual Conference of Indian Pharmacological Society and International Conference on Translational Medicine; 16-18 Dec 2013; Bangalore: Indian Pharmacological Society;2013

Daniels JK, Vermetten E. Odor-induced recall of emotional memories in PTSD-Review and new paradigm for research. Exp Neurol. 2016; 284(Pt B):168-80. https://doi. org/10.1016/j.expneurol.2016.08.001 PMid:27511295 DOI: https://doi.org/10.1016/j.expneurol.2016.08.001

Cortese BM, Uhde TW, Schumann AY, McTeague LM, Sege CT, Calhoun CD, et al. Anxiety-related shifts in smell function in children and adolescents. Chem Senses. 2021; 461-11. https://doi.org/10.1093/chemse/bjab051 PMid:34958383 PMCid:PMC8711292 DOI: https://doi.org/10.1093/chemse/bjab051

Glass ST, Heuberger E. Effects of a pleasant natural odor on mood: No influence of age. Nat Prod Commun. 2016; 11(10):1555-9. https://doi.org/10.1177/ 1934578X1601101033 DOI: https://doi.org/10.1177/1934578X1601101033

Moss M, Hewitt S, Moss L, Wesnes K. Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang. Int J Neurosci. 2008; 118(1):59-77. https:// doi.org/10.1080/00207450601042094 PMid:18041606 DOI: https://doi.org/10.1080/00207450601042094

Emami A, Tepper J, Short B, Yaksh TL, Bendele AM, Ramani T, et al. Toxicology evaluation of drugs administered via uncommon routes: Intranasal, intraocular, intrathecal/ intraspinal, and intra-articular. Int J Toxicol. 2018; 37(1):4-27. https://doi.org/10.1177/1091581817741840 PMid:29264927 PMCid:PMC5874330 DOI: https://doi.org/10.1177/1091581817741840