Insight Into the Role of Alkaloids in the Different Signalling Pathways of Cholangiocarcinoma

Jump To References Section

Authors

  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida - 201306, Uttar Pradesh ,IN
  • Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida - 201306, Uttar Pradesh ,IN
  • Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara – 144001, Punjab ,IN

DOI:

https://doi.org/10.18311/jnr/2024/34661

Keywords:

Alkaloids, Cholangiocarcinoma, Risk Factors, Signalling Pathway

Abstract

Throughout the biliary tree, a variety of cells give rise to cholangiocarcinomas, a broad group of malignancies. The fact that these tumours are silent and asymptomatic, especially in their early stages, seriously impairs the effectiveness of available therapeutic options and contributes to their poor prognosis. Over the past few years, increased efforts have been made to identify the aetiology and signalling pathways of these tumours and to create more potent therapies. Since alkaloids are more potent and effective against cholangiocarcinoma cell lines, they have gained importance in the treatment of cholangiocarcinoma. In cell lines with cholangiocarcinoma, they promote apoptosis. and restrict the spread of cells, departure, and development. This review highlights the recent developments in the study of CCA, primarily concentrating on the regulation of the signalling pathway and revealing alkaloids demonstrating strong anti-cholangiocarcinoma efficacy, providing researchers with a rapid approach for the future development of powerful and efficient pharmaceutical compounds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-01-01

How to Cite

Sharma, R., Majee, C., Mazumder, R., Mazumder, A., Tyagi, P. K., & Chaitanya, M. V. N. L. (2024). Insight Into the Role of Alkaloids in the Different Signalling Pathways of Cholangiocarcinoma. Journal of Natural Remedies, 24(1), 43–58. https://doi.org/10.18311/jnr/2024/34661

Issue

Section

Short Review
Received 2023-08-07
Accepted 2023-09-19
Published 2024-01-01

 

References

Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. The Lancet. 2005; 366(9493):1303-14. https://doi.org/10.1016/S0140-6736(05)67530-7 PMid:16214602

Friman S. Cholangiocarcinoma—current treatment options. Scand J Surg. 2011; 100(1):30-4. https://doi.org/10.1177/145749691110000106 PMid:21491796

Mukkamalla SK, Naseri HM, Kim BM, Katz SC, Armenio VA. Trends in incidence and factors affecting survival of patients with cholangiocarcinoma in the United States. J Natl Compr Canc Net. 2018; 16(4):370-6. https://doi.org/10.6004/jnccn.2017.7056 PMid:29632056

Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatol. 2011; 54(1):173-84. https://doi.org/10.1002/hep.24351 PMid:21488076 PMCid: PMC3125451

Wu HJ, Chu PY. Role of cancer stem cells in cholangiocarcinoma and therapeutic implications. Int J Mol Sci. 2019; 20(17):4154. https://doi.org/10.3390/ijms20174154 PMid:31450710 PMCid: PMC6747544

Kendall T, Verheij J, Gaudio E, Evert M, Guido M, Goeppert B, Carpino G, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019; 39:7-18. https://doi.org/10.1111/liv.14093 PMid:30882996

Lendvai G, Szekerczés T, Illyés I, Dóra R, Kontsek E, Gógl A, Kiss A, Werling K, Kovalszky I, Schaff Z, Borka K, et al. Cholangiocarcinoma: classification, histopathology and molecular carcinogenesis. Pathol. Oncol. Res. 2020; 26:3-15. https://doi.org/10.1007/s12253-018-0491-8 PMid:30448973

Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H, et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol. 2010; 2(12):419. https://doi.org/10.4254/wjh.v2.i12.419 PMid:21191517 PMCid: PMC3010511

Goyal L, Kongpetch S, Crolley VE, Bridgewater J. Targeting FGFR inhibition in cholangiocarcinoma. Cancer Treat Rev. 2021; 95:102170. https://doi.org/10.1016/j.ctrv.2021.102170 PMid:33735689

Hynes NE, MacDonald G. ErbB receptors and signalling pathways in cancer. Curr. Opin. Cell Biol. 2009; 21(2):177-84. https://doi.org/10.3389/fonc.2019.00653 PMid:31417861 PMCid: PMC6682688

Kiguchi K. Molecular aspects of cholangiocarcinoma. J Hepatobiliary Pancreatic Sci. 2014; 21(6):371-9. https://doi.org/10.1002/jhbp.66 PMid:24420749

Kang YJ, Park KK, Chung WY, Hwang JK, Lee SK. Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells. J Pharmacol Sci. 2009; 111(3):276-84. https://doi.org/10.1254/jphs.09141FP PMid:19926935

Daly JW, Spande TF, Garraffo HM. Alkaloids from amphibian skin: a tabulation of over eight hundred compounds. J Nat Prod. 2005; 68(10):1556-75. https://doi.org/10.1021/np0580560 PMid:16252926

Facciuto ME, Singh MK, Lubezky N, Selim MA, Robinson D, Kim-Schluger L, Florman S, Ward SC, Thung SN, Fiel M, Schiano TD, et al. Tumours with intrahepatic bile duct differentiation in cirrhosis: implications on outcomes after liver transplantation. Transplantation. 2015; 99:151-7. https://doi.org/10.1097/TP.0000000000000286 PMid:25029385

Marcano-Bonilla L, Mohamed EA, Mounajjed T, Roberts LR. Biliary tract cancers: epidemiology, molecular pathogenesis and genetic risk associations. Chin Clin Oncol. 2016; 5(5):61. https://doi.org/10.21037/cco.2016.10.09 PMid:27829275

Bergquist A, Von Seth E. Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol. 2015; 29(2):221-32. https://doi.org/10.1016/j.bpg.2015.02.003 PMid:25966423

Khan SA, Emadossadaty S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, Toledano MB, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol. 2012; 56(4):848-54. https://doi.org/10.1016/j.jhep.2011.11.015 PMid:22173164

Gatto M, Bragazzi MC, Semeraro R, Napoli C, Gentile R, Torrice A, Gaudio E, Alvaro D. Cholangiocarcinoma: update and future perspectives. Dig Liver Dis. 2010; 42:253-60. https://doi.org/10.1016/j.dld.2009.12.008 PMid:20097142

Alvaro D, Crocetti E, Ferretti S, Bragazzi MC, Capocaccia R. Descriptive epidemiology of cholangiocarcinoma in Italy. Dig Liver Dis. 2010; 42(7):490-5. https://doi.org/10.1016/j.dld.2009.10.009 PMid:20022823

Alvaro D, Bragazzi MC, Benedetti A, Fabris L, Fava G, Invernizzi P, Marzioni M, Nuzzo G, Strazzabosco M, Stroffolini T. Cholangiocarcinoma in Italy: A national survey on clinical characteristics, diagnostic modalities and treatment. Results from the “Cholangiocarcinoma” committee of the Italian Association for the Study of Liver Disease. Dig Liver Dis. 2011; 43(1):60-5. https://doi.org/10.1016/j.dld.2010.05.002 PMid:20580332

Alsaleh M, Leftley Z, Barbera TA, Sithithaworn P, Khuntikeo N, Loilome W, Yongvanit P, Cox IJ, Chamodol N, Syms RR, Andrews RH. Cholangiocarcinoma: a guide for the nonspecialist. Int J Gen Med. 2018; 20:13-23. https://doi.org/10.2147/IJGM.S186854 PMid:30588065 PMCid: PMC6304240

Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. In Seminars in liver disease. Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. 2004; 24:115-25. https://doi.org/10.1055/s-2004-828889 PMid:15192785

Doherty B, Nambudiri VE, Palmer WC. Update on the diagnosis and treatment of cholangiocarcinoma. Curr. Gastroenterol. Rep. 2017; 19:18. https://doi.org/10.1007/s11894-017-0542-4 PMid:28110453

Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019; 39:19-31. https://doi.org/10.1111/liv.14095 PMid:30851228

Chuang SC, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer let. 2009; 286:9-14. https://doi.org/10.1016/j.canlet.2008.10.040 PMid:19091458

Kirstein MM, Vogel A. Epidemiology and risk factors of cholangiocarcinoma. Visc Med. 2016; 32(6):395-400. https://doi.org/10.1159/000453013 PMid:28229073 PMCid:PMC5290446

Beaufrère A, Calderaro J, Paradis V. Combined hepatocellular-cholangiocarcinoma: an update. J. Hepatol. 2021; 74:1212-24. https://doi.org/10.1016/j.jhep.2021.01.035 PMid:33545267

Charbel H, Al-Kawas FH. Cholangiocarcinoma: epidemiology, risk factors, pathogenesis, and diagnosis. Curr. Gastroenterol. Rep. 2011; 13:182-7. https://doi.org/10.1007/s11894-011-0178-8 PMid:21271364

Tovoli F, Guerra P, Iavarone M, Veronese L, Renzulli M, De Lorenzo S, Benevento F, Brandi G, Stefanini F, Piscaglia F. Surveillance for hepatocellular carcinoma also improves survival of incidentally detected intrahepatic cholangiocarcinoma arisen in liver cirrhosis. Liver Cancer. 2020; 9:744-55. https://doi.org/10.1159/000509059 PMid:33442543 PMCid: PMC7768136

Abbas G, Lindor KD. Cholangiocarcinoma in primary sclerosing cholangitis. J Gastrointest Cancer. 2009; 40:19-25. https://doi.org/10.1007/s12029-009-9085-8 PMid:19705300

Haga H, Patel T. Molecular diagnosis of intrahepatic cholangiocarcinoma. J Hepato‐Biliary‐Pancreat Sci. 2015; 22(2):114-23. https://doi.org/10.1002/jhbp.156 PMid:25267595 PMCid: PMC4427040

Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol. 2014; 20:7312. https://doi.org/10.3748/wjg.v20.i23.7312 PMid:24966602 PMCid: PMC4064077

Gulamhusein AF, Eaton JE, Tabibian JH, Atkinson EJ, Juran BD, Lazaridis KN. Duration of inflammatory bowel disease is associated with an increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am J Gastroenterol. 2016; 111:705. https://doi.org/10.1038/ajg.2016.55 PMid:27002801 PMCid:PMC5027894

Razumilava N, Gores GJ. Cholangiocarcinoma. The Lancet. 2014; 383(9935):2168-79. https://doi.org/10.1016/S0140-6736(13)61903-0 PMid:24581682

Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B, Peix J, Sole M, Tovar V, Alsinet C, Cornella H. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterol. 2013; 144(4):829-40. https://doi.org/10.1053/j.gastro.2013.01.001 PMid:23295441 PMCid: PMC3624083

Tzanavari T, Giannogonas P, Karalis KP. TNF-α and obesity. TNF Pathophysiology. 2010; 11:145-56. https://doi.org/10.1159/000289203 PMid:20173393

Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, Eguchi H, Ishii H, Nagano H, Doki Y, Mori M. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial–mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer. 2013; 49(7):172540. https://doi.org/10.1016/j.ejca.2012.12.002 PMid:23298711

Meulmeester E, Ten Dijke P. The dynamic roles of TGF‐β in cancer. J Pathol. 2011; 223:206-19. https://doi.org/10.1002/path.2785 PMid:20957627

Pietras K, Sjöblom T, Rubin K, Heldin CH, Östman A. PDGF receptors as cancer drug targets. Cancer cell. 2003; 3:439-43. https://doi.org/10.1016/S1535-6108(03)00089-8 PMid:12781361

Merdrignac A, Angenard G, Allain C, Petitjean K, Bergeat D, Bellaud P, Fautrel A, Turlin B, Clément B, Dooley S, Sulpice L. A novel transforming growth factor beta‐induced long noncoding RNA promotes an inflammatory microenvironment in human intrahepatic cholangiocarcinoma. Hepatol Commun. 2018; 2(3):254-69. https://doi.org/10.1002/hep4.1142 PMid:29507901 PMCid: PMC5831019

Gao L, Zhang Z, Zhang P, Yu M, Yang T. Role of canonical Hedgehog signalling pathway in liver. Int J Biol Sci. 2018; 14(12):1636. https://doi.org/10.7150/ijbs.28089 PMid:30416378 PMCid: PMC6216024

Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000; 60(1):184-90. https://doi.org/10.1053/gast.2001.20875 PMid:11208728

Aishima S, Mano Y, Tanaka Y, Kubo Y, Shirabe K, Maehara Y, Oda Y. Different roles of inducible nitric oxide synthase and cyclooxygenase-2 in carcinogenesis and metastasis of intrahepatic cholangiocarcinoma. Hum Pathol. 2013; 44(6):1031-7. https://doi.org/10.1016/j.humpath.2012.09.004 PMid:23260331

Okada K, Shimizu Y, Nambu S, Higuchi K, Watanabe A. Interleukin-6 functions as an autocrine growth factor in a cholangiocarcinoma cell line. J Gastroenterol Hepatol. 1994; 9:4627. https://doi.org/10.1111/j.1440-1746.1994.tb01275.x PMid:7827297

Yamada D, Rizvi S, Razumilava N, Bronk SF, Davila JI, Champion MD, Borad MJ, Bezerra JA, Chen X, Gores GJ. IL-33 facilitates oncogene‐induced cholangiocarcinoma in mice by an interleukin-6 sensitive mechanism. Hepatol. 2015; 61(5):1627-42. https://doi.org/10.1002/hep.27687 PMid:25580681 PMCid: PMC4406813

Fava G, Marzioni M, Benedetti A, Glaser S, DeMorrow S, Francis H, Alpini G. Molecular pathology of biliary tract cancers. Cancer lett. 2007; 250(2):155-67. https://doi.org/10.1016/j.canlet.2006.09.011 PMid:17069969

Papoutsoglou P, Louis C, Coulouarn C. Transforming growth factor-beta (TGF-β) signalling pathway in cholangiocarcinoma. Cells. 2019; 8(9):960. https://doi.org/10.3390/cells8090960 PMid:31450767 PMCid:PMC6770250

Cigliano A, Wang J, Chen X, Calvisi DF. Role of the Notch signaling in cholangiocarcinoma. Expert. Opin. Ther. Targets. 2017; 21(5):471-83. https://doi.org/10.1080/14728222.2017.1310842 PMid:28326864

Zhang KS, Zhou Q, Wang YF, Liang LJ. Inhibition of Wnt signalling induces cell apoptosis and suppresses cell proliferation in cholangiocarcinoma cells. Oncol Rep. 2013; 30(3):1430-8. https://doi.org/10.3892/or.2013.2560 PMid:23799613

Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, Wigmore SJ. WNT signalling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Investig. 2015; 125(3):1269-85. https://doi.org/10.1172/JCI76452 PMid:25689248 PMCid: PMC4362247

Jinawath A, Akiyama Y, Sripa B, Yuasa Y. Dual blockade of the Hedgehog and ERK1/2 pathways coordinately decreases proliferation and survival of cholangiocarcinoma cells. J Cancer Res Clin Oncol. 2007; 133:271-8. https://doi.org/10.1007/s00432-006-0166-9 PMid:17294242

Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2012; 9:44-54. https://doi.org/10.1038/nrgastro.2011.222 PMid:22143274

Fingas CD, Mertens JC, Razumilava N, Sydor S, Bronk SF, Christensen JD, Rizvi SH, Canbay A, Treckmann JW, Paul A, Sirica AE. Polo-like kinase 2 is a mediator of hedgehog survival signalling in cholangiocarcinoma. Hepatol. 2013; 58(4):1362-74. https://doi.org/10.1002/hep.26484 PMid:23703673 PMCid: PMC3811036

Roskoski Jr R. The role of Fibroblast Growth Factor Receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol Res. 2020; 151:104567. https://doi.org/10.1016/j.phrs.2019.104567 PMid:31770593

Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: A new therapeutic opportunity in cancer FGF/ FGFR signaling in cancer. Clin Cancer Res. 2012;18(7):1855-62. https://doi.org/10.1016/j.phrs.2019.104567 PMid:31770593

Salati M, Caputo F, Baldessari C, Carotenuto P, Messina M, Caramaschi S, Dominici M, Bonetti LR. The Evolving Role of FGFR2 Inhibitors in Intrahepatic Cholangiocarcinoma: From Molecular Biology to Clinical Targeting. Cancer Manag Res. 2021; 9:7747-57. https://doi.org/10.2147/CMAR.S330710 PMid:34675670 PMCid: PMC8517413

Mahipal A, Tella SH, Kommalapati A, Anaya D, Kim R. FGFR2 genomic aberrations: Achilles heel in the management of advanced cholangiocarcinoma. Cancer Treat Rev. 2019; 78:1-7. https://doi.org/10.1016/j.ctrv.2019.06.003 PMid:31255945

Lee PC, Hendifar A, Osipov A, Cho M, Li D, Gong J. Targeting the Fibroblast Growth Factor Receptor (FGFR) in advanced cholangiocarcinoma: clinical trial progress and future considerations. Cancers. 2021; 13(7):1706. https://doi.org/10.3390/cancers13071706 PMid:33916849 PMCid: PMC8038487

Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. The EGF receptor family. 2003:33-55. https://doi.org/10.1016/B978-012160281-9/50004-9

Rizvi S, Borad MJ, Patel T, Gores GJ. Cholangiocarcinoma: molecular pathways and therapeutic opportunities. InSeminars in liver disease. Thieme Medical Publishers. 2014; 34(4):456-64. https://doi.org/10.1055/s-0034-1394144 PMid:25369307 PMCid: PMC4294543

Grant S, Qiao L, Dent P. Roles of ERBB family receptor tyrosine kinases, and downstream signalling pathways, in the control of cell growth and survival. Front. Biosci. 2002; 7(4):376-89. https://doi.org/10.2741/A782

Holmes DI, Zachary I. The Vascular Endothelial Growth Factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005; 6(2):1-0. https://doi.org/10.1186/gb-2005-6-2-209 PMid:15693956 PMCid: PMC551528

Mancinelli R, Mammola CL, Sferra R, Pompili S, Vetuschi A, Pannarale L. Role of the angiogenic factors in cholangiocarcinoma. Appl Sci. 2019; 3:9(7):1393. https://doi.org/10.3390/app9071393

Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med. 2019; 23(1):59-69. https://doi.org/10.1111/jcmm.13953 PMid:30394682 PMCid: PMC6307844

Vaeteewoottacharn K, Kariya R, Dana P, Fujikawa S, Matsuda K, Ohkuma K, Kudo E, Kraiklang R, Wongkham C, Wongkham S, Okada S. Inhibition of carbonic anhydrase potentiates bevacizumab treatment in cholangiocarcinoma. Tumor Biol. 2016; 37:9023-35. https://doi.org/10.1007/s13277-016-4785-8 PMid:26762407

Saeed A, Park R, Al-Jumayli M, Al-Rajabi R, Sun W. Biologics, immunotherapy, and future directions in the treatment of advanced cholangiocarcinoma. Clin Colorectal Cancer. 2019; 18(2):81-90. https://doi.org/10.1016/j.clcc.2019.02.005 PMid:30905548

Habli Z, Toumieh G, Fatfat M, Rahal ON, Gali-Muhtasib H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules. 2017; 22(2):250. https://doi.org/10.3390/molecules22020250 PMid:28208712 PMCid: PMC6155614

Shiu LY, Chang LC, Liang CH, Huang YS, Sheu HM, Kuo KW. Solamargine induces apoptosis and sensitizes breast cancer cells to cisplatin. Food Chem Toxicol. 2007; 45:2155-64. https://doi.org/10.1016/j.fct.2007.05.009 PMid:17619073

Wei G, Wang J, Du Y. Total synthesis of solamargine. Bioorg Med Chem Lett. 2011; 21(10):2930-3. https://doi.org/10.1016/j.bmcl.2011.03.064 PMid:21482107

Kalalinia F, Karimi-Sani I. Anticancer properties of solamargine: a systematic review. Phytother Res. 2017; 31(6):858-70. https://doi.org/10.1002/ptr.5809 PMid:28383149

Xie X, Zhu H, Yang H, Huang W, Wu Y, Wang Y, Luo Y, Wang D, Shao G. Solamargine triggers hepatoma cell death through apoptosis. Oncol Lett. 2015; 10(1):168-74. https://doi.org/10.3892/ol.2015.3194 PMid:26170994 PMCid: PMC4487093

Zhang X, Yan Z, Xu T, An Z, Chen W, Wang X, Huang M, Zhu F. Solamargine derived from Solanum nigrum induces apoptosis of human cholangiocarcinoma QBC939 cells. Oncol Lett. 2018; 15(5):6329-35. https://doi.org/10.3892/ol.2018.8171

Gao S, Li X, Ding X, Qi W, Yang Q. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells. Cell Physiol Biochem. 2017; 41:1633-48. https://doi.org/10.1159/000471234 PMid:28359054

Rogosnitzky M, Okediji P, Koman I. Cepharanthine: a review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacol Rep. 2020; 72(6):1509-16. https://doi.org/10.1007/s43440-020-00132-z PMid:32700247 PMCid: PMC7375448

Bailly C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine. 2019; 62:152956. https://doi.org/10.1016/j.phymed.2019.152956 PMid:31132753 PMCid: PMC7126782

Uthaisar K, Seubwai W, Srikoon P, Vaeteewoottacharn K, Sawanyawisuth K, Okada S, Wongkham S. Cepharanthine suppresses metastatic potential of human cholangiocarcinoma cell lines. Asian Pac J Cancer Prev. 2012; 13(Suppl):149-54.

Seubwai W, Vaeteewoottacharn K, Hiyoshi M, Suzu S, Puapairoj A, Wongkham C, Okada S, Wongkham S. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-κB. Cancer sci. 2010; 101(7):1590-5. https://doi.org/10.1111/j.1349-7006.2010.01572.x PMid:20412118

Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem. 2021; 220:113471. https://doi.org/10.1016/j.ejmech.2021.113471 PMid:33930801

Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on the contemporary status and future possibilities as an anticancer agent. Pharmacol Res. 2020; 156:104772. https://doi.org/10.1016/j.phrs.2020.104772 PMid:32283222

Thongsom S, Suginta W, Lee KJ, Choe H, Talabnin C. Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signalling pathway. Apoptosis. 2017; 22:1473-84. https://doi.org/10.1007/s10495-017-1422-y PMid:28913568

Roy MK, Thalang VN, Trakoontivakorn G, Nakahara K. Mahanine, a carbazole alkaloid from Micromelum minutum, inhibits cell growth and induces apoptosis in U937 cells through a mitochondrial-dependent pathway. Br J Pharmacol. 2005; 5:145(2):145. https://doi.org/10.1038/sj.bjp.0706137 PMid:15753952 PMCid: PMC1576126

Sinha S, Pal BC, Jagadeesh S, Banerjee PP, Bandyopadhaya A, Bhattacharya S. Mahanine inhibits growth and induces apoptosis in prostate cancer cells through the deactivation of Akt and activation of caspases. The Prostate. 2006; 66:1257-65. https://doi.org/10.1002/pros.20415 PMid:16683271

Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem. 2021; 226:113839. https://doi.org/10.1016/j.ejmech.2021.113839 PMid:34536668

Puthdee N, Seubwai W, Vaeteewoottacharn K, Boonmars T, Cha’on U, Phoomak C, Wongkham S. Berberine induces cell cycle arrest in cholangiocarcinoma cell lines via inhibition of NF-κB and STAT3 pathways. Biol Pharm Bull. 2017; 40(6):751-7. https://doi.org/10.1248/bpb.b16-00428 PMid:28566619

Tsang CM, Cheung YC, Lui VW, Yip YL, Zhang G, Lin VW, Cheung KC, Feng Y, Tsao SW. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor-associated fibroblasts. BMC cancer. 2013; 13:1-1. https://doi.org/10.1186/1471-2407-13-619 PMid:24380387 PMCid: PMC3890551

Sureram S, Senadeera SP, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2012; 22(8):29025. https://doi.org/10.1016/j.bmcl.2012.02.053 PMid:22418278

Janeklang S, Nakaew A, Vaeteewoottacharn K, Seubwai W, Boonsiri P, Kismali G, Suksamrarn A, Okada S, Wongkham S. In vitro and in vivo antitumor activity of tiliacorinine in human cholangiocarcinoma. Asian Pac J Cancer Prev. 2014; 15(17). https://doi.org/10.7314/APJCP.2014.15.17.7473 PMid:25227861

Wang MX, Lin L, Chen YD, Zhong YP, Lin YX, Li P, Tian X, Han B, Xie ZY, Liao QF. Evodiamine has therapeutic efficacy in ulcerative colitis by increasing Lactobacillus acidophilus levels and acetate production. Pharmacol Res. 2020; 159:104978. https://doi.org/10.1016/j.phrs.2020.104978 PMid:32485282

Li X, Ge J, Zheng Q, Zhang J, Sun R, Liu R. Evodiamine and rutaecarpine from Tetradium ruticarpum in the treatment of liver diseases. Phytomedicine. 2020; 68:153180. https://doi.org/10.1016/j.phymed.2020.153180 PMid:32092638

Zhu B, Zhao L, Liu Y, Jin Y, Feng J, Zhao F, Sun J, Geng R, Wei Y. Induction of phosphatase shatterproof 2 by evodiamine suppresses the proliferation and invasion of human cholangiocarcinoma. Int J Biochem Cell Biol. 2019; 108:98-110. https://doi.org/10.1016/j.biocel.2019.01.012 PMid:30682488

Zhang H, Chen L, Sun X, Yang Q, Wan L, Guo C. Matrine: a promising natural product with various pharmacological activities. Front Pharmacol. 2020; 11:588. https://doi.org/10.3389/fphar.2020.00588 PMid:32477114 PMCid: PMC7232545

Xu B, Xu M, Tian Y, Yu Q, Zhao Y, Chen X, Mi P, Cao H, Zhang B, Song G, Zhan YY. Matrine induces RIP3-dependent necroptosis in cholangiocarcinoma cells. Cell Death Discov. 2017; 3:1-1. https://doi.org/10.1038/cddiscovery.2016.96 PMid:28179994 PMCid: PMC5253620

Yang N, Han F, Cui H, Huang J, Wang T, Zhou Y, Zhou J. Matrine suppresses proliferation and induces apoptosis in human cholangiocarcinoma cells through suppression of JAK2/STAT3 signalling. Pharmacol Rep. 2015; 67:388-93. https://doi.org/10.1016/j.pharep.2014.10.016 PMid:25712669

Most read articles by the same author(s)

1 2 > >>