Optimizing Polyphenol Content and Extraction Methods for Antioxidant Constituents from Portulaca oleracea: Comparing Reflux and Maceration Methods with Various Solvents

Jump To References Section

Authors

  • Universitas Muhammadiyah Surakarta, Kartasura, Sukoharjo – 57169, Central Java ,ID
  • Tropical Biopharmaca Research Center, IPB University, Bogor – 16128, West Java ,ID
  • Department of Biochemistry, IPB University, Bogor – 16680, West Java ,IN
  • Research Center for Applied Botany, National Research and Innovation Agency, Bogor Regency – 16911, West Java ,ID
  • Department of Agronomy and Horticulture, IPB University, Bogor – 16680, West Java ,ID

DOI:

https://doi.org/10.18311/jnr/2024/35407

Keywords:

Flavonoids, Maceration, Phenolics, Portulaca oleracea, Reflux, Radical Scavenging Activity

Abstract

Background: The pursuit of developing effective drugs as antioxidants can be traced back to herbal ingredients, including purslane (Portulaca oleracea). The potential of purslane as a medicinal herb can be maximized by selecting the most suitable extraction method and type of solvent. Objective: To assess the levels of total phenolic compounds, total flavonoids, and radical scavenging capacity in P. oleracea obtained through various extraction methods and solvents. Methods: This study combines maceration and reflux methods with 96% ethanol, 80% ethanol, 96% methanol, and 80% methanol solvents to extract total phenolics, flavonoids, and radical scavenging activity from purslane. The folin-ciocalteu method was employed for measuring phenolic content, the AlCl3 method for flavonoid content, and the DPPH method for radical scavenging activity determination. Results: The reflux method using 80% methanol produced the highest total phenolic content, 5.15 ± 0.07 mg GAE/g DW. The maceration method using the same solvent yielded the highest total flavonoid content, 5.74 ± 0.29 mg QE/g DW. Both extraction methods showed similar radical scavenging activity, 1.10 ± 0.003 mg AAE/g DW for maceration and 1.07 ± 0.04 mg AAE/g DW for reflux. Conclusion: The extraction method and solvent significantly impact the total phenolic and flavonoid content produced by P. oleracea.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-08-31

How to Cite

Haryoto, Nurcholis, W., Liwanda, N., Kartiman, R., & Aisyah, S. I. (2024). Optimizing Polyphenol Content and Extraction Methods for Antioxidant Constituents from <i>Portulaca oleracea</i>: Comparing Reflux and Maceration Methods with Various Solvents. Journal of Natural Remedies, 24(8), 1855–1862. https://doi.org/10.18311/jnr/2024/35407

Issue

Section

Short Communication

Categories

Received 2023-10-22
Accepted 2024-07-22
Published 2024-08-31

 

References

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018; 13:757-772. https://doi.org/10.2147/CIA.S158513

Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016; 4(5):519522. https://doi.org/10.3892/br.2016.630

Mittler R. ROS are good. Trends Plant Sci. 2017; 22(1):1119. https://doi.org/10.1016/j.tplants.2016.08.002

Dziubla T, Butterfield DA, editors. Oxidative stress and biomaterials. Academic Press. 2016. https://doi.org/10.1016/B978-0-12-803269-5.00014-0

Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018; 23(4):965. https://doi.org/10.3390/molecules23040965

Saini RK, Rengasamy KRR, Mahomoodally FM, Keum YS. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol Res. 2020; 155:104730. https://doi.org/10.1016/j.phrs.2020.104730

Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid Med Cell Longev. 2015. p. 130315. https://doi.org/10.1155/2015/130315

Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxid Med Cell Longev. 2016. p. 8590578. https:// doi.org/10.1155/2016/8590578

Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell. 2013; 12(6):761-773. https://doi.org/10.1016/j.stem.2013.04.006

Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 2020; 52:192-203. https://doi.org/10.1038/s12276-020-0384-2

Moussa Z, Judeh ZMA, Ahmed SA. Nonenzymatic exogenous and endogenous antioxidants. Free Radical Medicine and Biology. 2019. https://doi.org/10.5772/intechopen.87778

Ighodaro OM, Akinloye OA. First line defence antioxidantssuperoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018; 54(4):287-293. https://doi.org/10.1016/j.ajme.2017.09.001

Yadav A, Kumari R, Yadav A, Mishra JP, Srivatva S, Prabha S. Antioxidants and its functions in human body - A review. Res Environ Life Sci. 2016; 9(11):1328-1331.

Chandrasekara A, Shahidi F. Herbal beverages: Bioactive compounds and their role in disease risk reduction A review. J Tradit Complement Med. 2018; 8(4):451458. https://doi.org/10.1016/j.jtcme.2017.08.006

Saboon, Chaudhari SK, Arshad S, Amjad MS, Akhtar MS. Natural compounds extracted from medicinal plants and their applications. Natural Bio-active Compounds. Springer. 2019. p. 193–207. https://doi.org/10.1007/978981-13-7154-7_7

Kumar GP, Anilakumar KR, Naveen S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J. 2015; 7(1):1-17. https://doi.org/10.5530/pj.2015.1.1

Husein SG, Sundalian M, Husna N. Review: Component analysis of purslanes chemicals compound (Portulaca oleraceae L. and Portulaca grandiflora Hook.). J Sains Kes. 2021; 3(2):317-327. https://doi.org/10.25026/jsk.v3i2.278

Jha AK, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci Technol. 2022; 119:579-591. https://doi.org/10.1016/j.tifs.2021.11.019

Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med. 2018; 13:20. https://doi.org/10.1186/s13020018-0177-x

Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014; 22(3):296-302. https://doi.org/10.1016/j.jfda.2013.11.001

Kumar SPJ, Prasad SR, Banerjee R, Agarwal DK, Kulkarni KS, Ramesh KV. Green solvents and technologies for oil extraction from oilseeds. Chem Cent J. 2017; 11(1):9. https:// doi.org/10.1186/s13065-017-0238-8

Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J Food Qual. 2017; 9305047. https:// doi.org/10.1155/2017/9305047

Khumaida N, Syukur M, Bintang M, Nurcholis W. Phenolic and flavonoid content in ethanol extract and agromorphological diversity of Curcuma aeruginosa accessions growing in West Java, Indonesia. Biodiversitas. 2019; 20(3):656-663. https://doi.org/10.13057/biodiv/d200306

Calvindi J, Syukur M, Nurcholis W. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas. 2020; 21(6):2420-2424. https://doi.org/10.13057/biodiv/d210612

Uddin MK, Juraimi AS, Ali ME, Ismail MR. Evaluation of antioxidant properties and mineral composition of Purslane (Portulaca oleracea L.) at different growth stages. Int J Mol Sci. 2012; 13(8):10257-10267. https://doi.org/10.3390/ ijms130810257

Atere TG, Akinloye OA, Ugbaja RN, Ojo DA, Dealtry G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci Hum Wellness. 2018; 7(4):266-272. https://doi.org/10.1016/j.fshw.2018.09.004

Cujic N, Savikin K, Jankovic T, Pljevljakusic D, Zdunic G, Ibric S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016; 194:135-142. https://doi.org/10.1016/j.foodchem.2015.08.008

Nurcholis W, Khumaida N, Syukur M, Bintang M. Variability of total phenolic and flavonoid content and antioxidant activity among 20 Curcuma aeruginosa Roxb. accessions of Indonesia. Asian J Biochem. 2016; 11(3):142148. https://doi.org/10.3923/ajb.2016.142.148

Oboh G. Effect of blanching on the antioxidant properties of some tropical green leafy vegetables. LWT - Food Sci Technol. 2005; 38(5):513-517. https://doi.org/10.1016/j.lwt.2004.07.007

Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: A review. Curr Res Food Sci. 2021; 4:200-214. https://doi.org/10.1016/j.crfs.2021.03.011

Yao L, Jiang Y, Datta N, Singanusong R, Liu X, Duan J, Raymont K, Lisle A, Xu Y. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 2004; 84(2):253263. https://doi.org/10.1016/S0308-8146(03)00209-7

Hapsari S, Yohed I, Kristianita RA, Jadid N, Aparamarta HW, Gunawan S. Phenolic and flavonoid compounds extraction from Calophyllum inophyllum leaves. Arab J Chem. 2022; 15(3):103666. https://doi.org/10.1016/j.arabjc.2021.103666

Chaaban H, Ioannou I, Chebil L, Slimane M, Gerardin C, Paris C, Charbonnel C, Chekir L, Ghoul M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J Food Process Preserv. 2017; 41:e13203. https:// doi.org/10.1111/jfpp.13203

Yahia Y, Benabderrahim MA, Tlili N, Hannachi H, Ayadi L, Elfalleh W. Comparison of three extraction protocols for the characterization of caper (Capparis spinosa L.) leaf extracts: Evaluation of phenolic acids and flavonoids by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI–MS) and the antioxidant activity. Anal Lett. 2020; 53(9):1366-1377. https://doi.org/10.1080/00032719.2019.1706546

Chen D, Yao JN, Liu T, Zhang HY, Li RR, Zhang ZJ, Gu XZ. Research and application of Portulaca oleracea in pharmaceutical area. Chin Herb Med. 2019; 11(2):150159. https://doi.org/10.1016/j.chmed.2019.04.002

Banjaranohor SDS, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014; 23(4):239-244. https://doi.org/10.13181/mji.v23i4.1015

Santos-Sanchez NF, Salas-Coronado R, Villanueva-Canongo C, Hernandez-Carlos B. Antioxidant compounds and their antioxidant mechanism. Antioxidants. 2019. https://doi.org/10.5772/intechopen.85270

Nurcholis W, Putri DNS, Husnawati H, Aisyah SI, Prioesoeryanto BP. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits. Ann Agric Sci. 2021; 66(1):58-62. https://doi.org/10.1016/j.aoas.2021.04.001

Velderrain-Rodriguez GR, Palafox-Carlos H, WallMedrano A, Ayala-Zavala JF, Chen C-YO, Robles-Sanchez M, Astiazaran-Garcia H, Alvarez-Parrilla E, GonzalezAguilar GA. Phenolic compounds: Their journey after intake. Food Funct. 2014; 5(2):189-197. https://doi.org/10.1039/c3fo60361j

Campos MRS. Bioactive compounds: Health benefits and potential applications. Woodhead Publishing.2019; iii. https://doi.org/10.1016/B978-0-12-814774-0.01001-X

Rosa LAD, Moreno-Escamilla JO, Rodrigo-Garcia J, Alvarez-Parrilla E. Chapter 12 - Phenolic compounds. Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing. 2019. p. 253-271. https:// doi.org/10.1016/B978-0-12-813278-4.00012-9.

Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021; 12(1):14-29. https://doi.org/10.1039/d0fo02324h

Foster JL, Huthwaite T, Yesberg JA, Garry M, Loftus EF. Repetition, not number of sources, increases both susceptibility to misinformation and confidence in the accuracy of eyewitnesses. Acta Psychol. 2012; 139(2):320326. https://doi.org/10.1016/j.actpsy.2011.12.004

Cheynier V. Polyphenols in foods are more complex than often thought. Am J Clin Nutr. 2005; 81(1):223S-229S. https:// doi.org/10.1093/ajcn/81.1.223S

Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021; 22(7):3380. https://doi.org/10.3390/ijms22073380

Hassan A, Barber SJ. The effects of repetition frequency on the illusory truth effect. Cogn Res Princ Implic. 2021; 6(38). https://doi.org/10.1186/s41235-021-00301-5

Santos-Buelga C, San Feliciano A. Flavonoids: From structure to health issues. Molecules. 2017; 22(3):477. https://doi.org/10.3390/molecules22030477

Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540-27557. https://doi.org/10.1039/C5RA01911G.

Sorensen AM, Durand E, Laguerre M, Bayrasy C, Lecomte J, Villeneuve P, Jacobsen C. Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates. J Agric Food Chem. 2014; 62(52):12553-12562. https://doi.org/10.1021/jf500588s

Jayaprakasha GK, Rao LJ, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 2006; 98(4):720-724. https://doi.org/10.1016/j.foodchem.2005.06.037

Amorati R, Baschieri A, Cowden A, Valgimigli L. The antioxidant activity of quercetin in water solution. Biomimetics. 2017; 2(3):9. https://doi.org/10.3390/biomimetics2030009

Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 2006; 54(8):2951-2956. https://doi.org/10.1021/jf052900a

Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C, Liu M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021; 137:257-264. https://doi.org/10.1016/j.sajb.2020.10.022

Zanwar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. Antioxidant role of catechin in health and disease. In: Watson RR, Preedy VR, Zibadi S.Polyphenols in Human Health and Disease. 2014; 1:267-271. https://doi.org/10.1016/B978-0-12-398456-2.00021-9

Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015; 18(B):757-781. https://doi.org/10.1016/j.jff.2015.01.047