The Effect of MWCNT and GNP on the Flame Retardant Properties of Glass Fiber Reinforced Composites

Jump To References Section

Authors

  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572103 ,IN
  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572103 ,IN
  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572103 ,IN
  • Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, BH. Road, Tumakuru, Karnataka-572103 ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32010

Keywords:

Flame Parameters, Nanomaterials, Cone Calorimetry, Nanotechnology.

Abstract

Nanotechnology in engineering is intended for achieving newer materials with immensely improved electrical, thermal and mechanical properties. The effectiveness of different fillers (micro and nanoscale) on the flame retardant behaviour of glass fiber reinforced epoxy composites were studied using cone calorimetry. In the present investigation, the fabrication of epoxy composites with ECR glass fiber reinforcement using the pultrusion method was taken up. The effect of incorporation of micron-sized ATH, carbon nanofillers like multi-walled carbon nanotubes (MWCNT) and Graphene nanoplatelets (GNP) is investigated. With respect to flame retardant properties, the composites with the combination of alumina (ATH) and carbon nanofillers show better results as compared to composites with individual fillers. The results exhibit a good agreement with more compact chars formed on the surface of the charred polymer. However, the cone calorimetry results of glass fibre reinforced composite show no significant improvement with respect to heat release rate. Further, Flame parameters of the composites show minimal deterioration due to the incorporation of the ATH and carbon fillers. Studies on the morphology using FESEM are well correlated with the flame properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

., R., Madhu``, B. M., ., P., & Sundara Rajan, J. (2022). The Effect of MWCNT and GNP on the Flame Retardant Properties of Glass Fiber Reinforced Composites. Journal of Mines, Metals and Fuels, 70(8A), 56–62. https://doi.org/10.18311/jmmf/2022/32010

Issue

Section

Articles

 

References

V. Gnanakkan and S. Veerakumar, “On the Influence of the Functionalization of Graphene Nanoplatelets and Glass Fiber on the Mechanical Properties of GFRP Composites,” Appl. Compos. Mater., pp. 1127–1152, 2021, doi: 10.1007/s10443-021-09908-9. DOI: https://doi.org/10.1007/s10443-021-09908-9

H. Fang, Y. Bai, W. Liu, Y. Qi, and J. Wang, “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments,” Compos. Part B, 2018, doi: 10.1016/j.compositesb.2018.11.047. DOI: https://doi.org/10.1016/j.compositesb.2018.11.047

Y. Dai, Y. Bai, and Z. Cai, “Thermal and mechanical evaluation on integration of GFRP and thin- fi lm fl exible PV cells for building applications,” J. Clean. Prod., vol. 289, p. 125809, 2021, doi: 10.1016/j.jclepro.2021.125809. DOI: https://doi.org/10.1016/j.jclepro.2021.125809

A. K. M. S. Ali and I. Ahmed, “Electrical characterization of glass fiber reinforced polymer (GFRP) composites for future metasurface antenna applications Electrical characterization of glass fi ber reinforced polymer ( GFRP ) composites for future metasurface antenna applications.”

Z. Sun et al., “Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone,” Polymers (Basel)., vol. 11, no. 3, 2019, doi: 10.3390/polym11030461. DOI: https://doi.org/10.3390/polym11030461

M. Turk, I. Hamerton, and D. S. Ivanov, “Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins,” Polymer (Guildf)., vol. 120, pp. 43–51, 2017, doi: 10.1016/j.polymer.2017.05.052. DOI: https://doi.org/10.1016/j.polymer.2017.05.052

Z. Xu, P. Song, J. Zhang, Q. Guo, and Y. W. Mai, “Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer,” Compos. Sci. Technol., vol. 168, no. June, pp. 363–370, 2018, doi: 10.1016/j.compscitech.2018.10.020. DOI: https://doi.org/10.1016/j.compscitech.2018.10.020

A. Abdul, K. Yop, S. Jin, and D. Hui, “Composites/: Part B Epoxy clay nanocomposites – processing, properties and applications/ : A review,” Compos. Part B, vol. 45, no. 1, pp. 308–320, 2013, doi: 10.1016/j.compositesb.2012.04.012. DOI: https://doi.org/10.1016/j.compositesb.2012.04.012

V. B. Mohan, K. tak Lau, D. Hui, and D. Bhattacharyya, “Graphene-based materials and their composites: A review on production, applications and product limitations,” Compos. Part B Eng., vol. 142, no. December 2017, pp. 200–220, 2018, doi: 10.1016/j.compositesb.2018.01.013. DOI: https://doi.org/10.1016/j.compositesb.2018.01.013

M. Sabet, A. Hassan, M. U. Wahit, and C. T. Ratnam, “Mechanical , Thermal and Electrical Properties of Ethylene Vinyl Acetate Irradiated by an Electron- Beam Mechanical , Thermal and Electrical Properties of Ethylene Vinyl Acetate Irradiated by an Electron-Beam,” vol. 2559, no. May, 2010, doi: 10.1080/03602551003652755. DOI: https://doi.org/10.1080/03602551003652755

G. Pandey and E. T. Thostenson, “Carbon nanotube-based multifunctional polymer nanocomposites,” Polym. Rev., vol. 52, no. 3–4, pp. 355–416, 2012, doi: 10.1080/15583724.2012.703747. DOI: https://doi.org/10.1080/15583724.2012.703747

F. H. Latief, A. Chafidz, H. Junaedi, A. Alfozan, and R. Khan, “Effect of alumina contents on the physicomechanical properties of alumina (Al2 o3) reinforced polyester composites,” Adv. Polym. Technol., vol. 2019, pp. 1–10, 2019, doi: 10.1155/2019/5173537. DOI: https://doi.org/10.1155/2019/5173537

M. H. A. Kudus et al., “Nonisothermal kinetic degradation of hybrid cnt/alumina epoxy nanocomposites,” Metals (Basel)., vol. 11, no. 4, pp. 1–16, 2021, doi: 10.3390/met11040657. DOI: https://doi.org/10.3390/met11040657

A. Atiqah, M. N. M. Ansari, M. S. S. Kamal, A. Jalar, N. N. Afeefah, and N. Ismail, “Effect of alumina trihydrate as additive on the mechanical properties of kenaf / polyester composite for plastic encapsulated electronic,” Integr. Med. Res., vol. 9, no. 6, pp. 12899–12906, 2020, doi: 10.1016/j.jmrt.2020.08.116. DOI: https://doi.org/10.1016/j.jmrt.2020.08.116

D. Zhuo et al., “Flame retardancy effects of graphene nanoplatelet/carbon nanotube hybrid membranes on carbon fiber reinforced epoxy composites,” J. Nanomater., vol. 2013, no. ii, 2013, doi: 10.1155/2013/820901. DOI: https://doi.org/10.1155/2013/820901

A. Kausar, I. Rafique, Z. Anwar, and B. Muhammad, “Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite,” Polym. - Plast. Technol. Eng., vol. 55, no. 14, pp. 1512–1535, 2016, doi: 10.1080/03602559.2016.1163607. DOI: https://doi.org/10.1080/03602559.2016.1163607

M. Hesami, R. Bagheri, and M. Masoomi, “Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites,” Iran. Polym. J. (English Ed., vol. 23, no. 6, pp. 469–476, 2014, doi: 10.1007/s13726-014-0241-z. DOI: https://doi.org/10.1007/s13726-014-0241-z

T. A. Nguyen and T. T. T. Bui, “Study the Effects of Carbon Nanotubes and Graphene Oxide Combinations on the Mechanical Properties and Flame Retardance of Epoxy Nanocomposites,” J. Nanomater., vol. 2021, 2021, doi: 10.1155/2021/1437929. DOI: https://doi.org/10.1155/2021/1437929

G. Beyer, “Flame retardancy of nanocomposites from research to technical products,” J. Fire Sci., vol. 23, no. 1, pp. 75–87, 2005, doi: 10.1177/0734904105048591. DOI: https://doi.org/10.1177/0734904105048591